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Abstract

We develop tests that help assess whether a high frequency data sample can be treated as

reasonably free of market microstructure noise at a given sampling frequency for the purpose of

implementing high frequency volatility and other estimators. The tests are based on the Hausman

principle of comparing two estimators, one that is efficient but not robust to the deviation being

tested, and one that is robust but not as efficient. We investigate the asymptotic properties of the

test statistic in a general nonparametric setting, and compare it with several alternatives that are

also developed in the paper. Empirically, we find that improvements in stock market liquidity over

the past decade have increased the frequency at which simple, uncorrected, volatility estimators

can be safely employed.
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averaging, super-efficiency, local power.
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1 Introduction

In theory, volatility estimation using high frequency data is a straightforward matter: summing the

squares of log-returns should produce a consistent and efficient estimator, which is called as realized

volatility (RV). In practice, however, matters are a bit more complicated. The idiosyncrasies of the
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trading process, including the facts that buy and sell orders execute at different prices, that prices

live on a discrete tick grid, that some orders face sudden changes in the order book due to high

frequency traders’ actions, etc., all mean that the observed transaction prices as well as the price

measures implied from quotes, are to be taken with some caution. As the frequency of observation

increases, market microstructure noise typically becomes more significant, degrading the signal to

noise ratio in the data to the point where the limit of the RV estimator changes to primarily reflect

the presence of the noise rather than the volatility of the underlying price.

The first response in the literature has been to down-sample to a level considered “safe” from

the worst effects of market microstructure noise, with the recommendation to sample every 5 or 15

minutes and not more frequently (see Andersen et al. (2001)). This approach has been criticized

on the grounds that it is rarely optimal in econometrics to discard large amounts of data that are

otherwise available, even if the data are known to be noisy (see Aı̈t-Sahalia et al. (2005)). This has

led to the development of many noise-robust estimators (see, e.g., Aı̈t-Sahalia and Jacod (2014),

Chapter 7) that make use of the full data sample, which as time passes is more and more likely to

be available at a sub-second frequency, resulting in large quantities of data that would otherwise be

discarded when sampling only every 5 or 15 minutes.

Noise-robust estimators are undoubtedly more complex to employ than the RV estimator, leading

to the following natural question: is the effort worth it? In other words, can we determine whether

a particular sample at a given frequency of observation is “safe” from market microstructure noise,

so that RV is a suitable volatility estimator for that sample? This paper addresses this question by

developing a test for this purpose. The test we propose compares RV to a noise-robust volatility

estimator. The metric we employ for the comparison is based on an idea due to Hausman (1978).

Hausman (1978) proposed a series of specification tests for a null hypothesis against an alternative

that rely on the following clever idea. Suppose that we have access to two estimators, A and B, of

the same quantity or parameter, say β, with the following properties:

Estimator A Estimator B

H0 : Null Consistent and Efficient Consistent

H1 : Alternative Inconsistent Consistent

So both estimate the same β with (β̂A) and without (β̂B) imposing the restriction embedded in

H0. The difference β̂B − β̂A should be small under H0 but large under H1. But since β̂A and β̂B

use the same data, they are likely to be correlated, leading a priori to a rather messy variance of

β̂B − β̂A. One of key insights of Hausman (1978) is that the efficiency of β̂A under H0 implies that

β̂B − β̂A and β̂A must be asymptotically uncorrelated. Otherwise, a more efficient estimator could

be constructed by linearly combining β̂A and β̂B. So

AVAR(β̂B − β̂A) = AVAR(β̂B)−AVAR(β̂A). (1)
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With V = AVAR(β̂B)−AVAR(β̂A) and V̂ a consistent estimator of it, a Hausman test statistic can

be constructed in the form

Hn = n
(
β̂B − β̂A

)ᵀ
V̂ −1

(
β̂B − β̂A

)
(2)

with ᵀ denoting transposition and −1 denoting the pseudo-inverse of the matrix. From (1), all that

is needed to compute V̂ and hence Hn are the separate asymptotic variances of β̂A and β̂B. Their

covariance does not enter the calculation.

Many applications of this principle have been proposed, starting in Hausman (1978), where it

was applied to the problem of detecting the potential endogeneity of a set of regressors, which is

achieved by comparing (A), ordinary least squares (OLS) estimates, to (B), instrumental variables

(IV) estimates; checking whether a set of extra instruments are valid, achieved by comparing (A), IV

estimates with a large set of instruments, to (B), IV estimates with a subset of instruments; in panel

data, comparing (A), random effects (RE) estimates, to (B), fixed effects estimates (FE) where in

the RE case, the generalized least squares-type RE estimator is efficient for Gaussian errors but in

the FE case, the RE estimator is inconsistent because of the omitted variable.

Hausman and Taylor (1981) extended the analysis to the case where V is possibly singular, hence

the use of a pseudo-inverse above. White (1980) proposed to detect heteroscedasticity by comparing

(A), OLS standard errors, to (B), heteroscedasticity-robust standard errors. Hausman and Pesaran

(1983) proposed a J−test for testing two non-nested linear regression models, by comparing (A),

OLS in the first model, to (B), OLS in an artificial model where the fitted values from the second

model are added as regressors to the original regressors of the first model.

Aı̈t-Sahalia (1996) constructed a test for the specification of continuous-time models using discrete

data by comparing (A), the implied parametric density estimator at the frequency of observation

from the assumed continuous-time model, to (B), a nonparametric density estimator constructed

from the discrete data without reference to the assumed model. Hahn and Hausman (2002) tested

whether first order asymptotics are satisfactory by comparing forward and reverse 2SLS, which have

the same first order but different second order asymptotics due to second-order bias. Hausman et al.

(2005) developed a test to determine whether instruments are strong or weak. A local power analysis

of Hausman tests is due to Holly (1982) and equivalent formulations of the test to Holly and Monfort

(1986).

The present paper applies the principles behind Hausman tests to the problem of testing for the

presence of market microstructure noise in high frequency data. In a typical model for high frequency

data, transaction log-prices observed at high frequency from 0 to T , at times 0,∆n, 2∆n, . . . , n∆n =

T, consist of an unobservable fundamental price Xi∆n plus some noise component Ui due to the

imperfections of the trading process (see, e.g., for instance Black (1986))

X̃i∆n = Xi∆n + Ui. (3)
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U summarizes a diverse array of market microstructure effects, either informational or not: bid-ask

bounces, discreteness of price changes, differences in trade sizes or informational content of price

changes, gradual response of prices to a block trade, the strategic component of the order flow,

inventory control effects, transient liquidity issues, fleeting quotes by high frequency market makers,

mini flash crashes, data feed errors, etc.

The “parameter” β of interest is now a random variable, the quadratic variation of the funda-

mental log-price process, denoted as σ2
QV. Without noise, the realized volatility (RV) of the process,

which is simply the sum of squares of log-returns

σ̂2
RV =

1

T

n∑
i=1

(
X̃i∆n − X̃(i−1)∆n

)2
, (4)

estimates the quadratic variation.

In theory, sampling as often as possible (∆n → 0) will produce in the limit a perfect estimate

σ̂2
RV of σ2

QV in the absence of noise (U ≡ 0), as first shown theoretically in Jacod (1994). In the

presence of market microstructure noise, however, σ̂2
RV diverges as ∆n → 0 instead of converging to

σ2
QV. Indeed, since each transaction adds its own noise component, a log-return over a tiny time

interval ∆n is mostly composed of market microstructure noise, while the informational content of

the log-return in variance terms is proportional to ∆n. As ∆n increases, the amount of noise in each

log-return remains the same, since each price is measured with error, while the informational content

of volatility increases and the estimator becomes less biased (see Aı̈t-Sahalia et al. (2005)).

At what frequency does this effect start to matter, to the point that noise-robust estimators of

σ2
QV should be employed instead of σ̂2

RV? The Hausman test we construct compares two estimators

of σ2
QV. The first, (A), is efficient if there is no noise, while the other, (B), is inefficient if there is no

noise, but robust to the presence of noise. The test we propose can be considered a formalization

and an improvement of the visual “signature plot” procedure of Andersen et al. (2000) (see also

Patton (2011)), which depicts the divergence of σ̂2
RV as a function of the sampling frequency, just like

Hausman (1978)’s test for the endogeneity of the regressors was a formalization and an improvement

of Sargan (1958)’s recommendation to check whether OLS lies outside IV’s confidence interval. This

is illustrated in Figure 1: as the sampling frequency increases, σ̂2
RV diverges in the presence of noise

whereas noise-robust estimators do not. The test compares the two and measures whether this

divergence is significant or not.

The general recommendation to sample every 5 minutes when the data are noisy was thoroughly

investigated in the recent paper Liu et al. (2015), using the ranking method of Patton (2011). Across

a range of assets in different classes, they found that the subsampling approach of Zhang et al. (2005)

employed to produce 5-minute daily returns volatilities is the preferred method for the purpose of

estimating daily volatility. We find that the common practice of treating 5-minute returns as noise-

free might be problematic in the earlier years for Dow Jones 30 index and S&P 100 index constituents,
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but is a reasonably safe choice for data sampled after 2009. For a large portion of S&P 500 index

constituents, however, 5-minute returns cannot be treated as noise-free, even in the most recent part

of the sample.

The paper is organized as follows. We start in Section 2 by motivating the problem of testing

for the presence of market microstructure noise in a parametric context. We then construct and

analyze Hausman tests using likelihood-based estimators in increasingly realistic yet complicated

nonparametric settings. Section 3 discusses alternative tests that we propose for this problem,

including an autocovariance-based test, a Student-t test, and a different Hausman test based on a

pre-averaging estimator. Section 4 compares them in finite samples. Section 5 applies these tests

to determine for the constituent stocks of the Dow Jones 30 index, as well as those of the S&P 100

and S&P 500, at which frequency σ̂2
RV can safely be used, and relates the results of the tests to

possible measures of market liquidity. Section 6 concludes. The appendix contains the proofs. A

web appendix contains additional simulation results.

2 Noise-Robust Estimation with a Parametrically-Motivated Like-

lihood

2.1 The Parametric Case

We start by considering the simplest possible parametric model for the log price Xt:

Xt = σ0Wt, (5)

where W is a Brownian motion and volatility σ0 is constant. Observations X̃ are potentially con-

taminated by noise as follows

X̃i∆n = Xi∆n + anUi, (6)

where U follows an i.i.d. Gaussian distribution with mean 0 and variance 1. Under H0, a
2
n = 0 while

under H1, a
2
n = a2

0 > 0 is a constant. This model is certainly too simplistic as a representation of

the data, but it turns out that it is very useful to generate a surprisingly robust likelihood function

not only to departures from the Gaussianity of the noise (see Aı̈t-Sahalia et al. (2005)) but also from

the constancy of the volatility parameter (see Xiu (2010)), and as we will see below provides a test

that is applicable even in the presence of jumps.

In the absence of noise, σ̂2
RV is consistent and achieves the parametric efficiency bound, that is,

as ∆n → 0,

∆−1/2
n

(
σ̂2

RV − σ2
0

) L−→ N
(
0, 2σ4

0/T
)
, (7)

as shown in Gloter and Jacod (2001) and Zhang et al. (2005).
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When noise is present, σ̂2
RV becomes inconsistent since

σ̂2
RV = σ2

0 + 2a2
0∆−1

n + op(1). (8)

So σ̂2
RV → ∞ as ∆n → 0. In this setting, a noise-robust parametric estimator is the maximum

likelihood estimator (MLE) proposed by Aı̈t-Sahalia et al. (2005). The observed log-returns

Yi = X̃i∆n − X̃(i−1)∆n
, (9)

are such that

Yi = σ0

(
Wi∆n −W(i−1)∆n

)
+ Ui − U(i−1), (10)

Yi+1 = σ0

(
W(i+1)∆n

−Wi∆n

)
+ U(i+1) − Ui, (11)

where the increments of the Brownian motion W are uncorrelated and the Ui’s are independent, and

so Cov(Yi, Yi+1) = −a2
0, Cov(Yi, Yi+2) = 0, etc., because of the repetition of the same term Ui in

both (10) and (11), but no further repetition of a common term occurs in log-returns more than one

lag apart. This implies that the observed log-returns Yi follow under H1 an MA(1) process with

Var(Yi) = σ2
0∆n + 2a2

0 and Cov(Yi, Yi−1) = −a2
0. (12)

So the proper log-likelihood function for the log-returns is

L(σ2, a2) = −n
2

log(2π)− 1

2
log det(Σ)− 1

2
Y ᵀΣ−1Y. (13)

with Y = (Y1, Y2, . . . , Yn)ᵀ and Σ = σ2∆nIn +a2Jn where In to denote the n×n identity matrix and

(Jn)ij = −1{i=j±1} + 2 × 1{i=j} with 1{•} denoting the indicator function, is the proper variance-

covariance matrix to employ.

From Aı̈t-Sahalia et al. (2005), the likelihood estimator (σ̂2
MLE, â

2
MLE) has the following asymp-

totic distribution under H1:(
∆
−1/4
n

(
σ̂2

MLE − σ2
0

)
∆
−1/2
n

(
â2

MLE − a2
0

) ) L−→ N

((
0

0

)
,

(
8a0σ

4
0/T 0

0 2a4
0/T

))
. (14)

Under the null hypothesis, i.e., when noise is absent, σ̂2
MLE remains asymptotically normal yet at a

higher convergence rate, which matches that of σ̂2
RV:

∆−1/2
n

(
σ̂2

MLE − σ2
0

) L−→ N
(
0, 6σ4

0/T
)
. (15)

The increase in the asymptotic variance in (15) compared to that of (7), by a factor 6 vs. 2, is due

to σ̂2
MLE attempting to control for the presence of noise when in fact there is none.

The problem of testing the null hypothesis of H0 : a2
0 = 0 against the alternative H1 : a2

0 > 0 now

falls into the classic Hausman test paradigm: σ̂2
MLE is consistent under both the null and alternative
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hypotheses, but σ̂2
MLE is not as efficient as σ̂2

RV under the null, which reaches the parametric efficiency

bound under the null but is inconsistent under the alternative. We construct a Hausman test statistic

accordingly as

H1n = ∆−1
n

(
σ̂2

MLE − σ̂2
RV

)2
V̂1n

, (16)

where V̂1n denotes a consistent estimator of the asymptotic variance

AVAR
(
σ̂2

MLE − σ̂2
RV

)
= AVAR

(
σ̂2

MLE

)
−AVAR

(
σ̂2

RV

)
. (17)

Such an estimator is for instance

V̂1n ≡ 4
(
σ̂2

RV

)2
/T, (18)

which is consistent under H0. We will show below (see Corollary 1) that{
H1n

L−→ χ2
1, under H0

H1n
p−→∞, under H1

, (19)

which implies that the proposed Hausman test has asymptotic size control under the null, and is

consistent under the alternative.

Next, we investigate the behavior of H1n under the sequence of local alternatives Hn : a2
n =

a2
0∆

3/2
n . The fact that ∆

3/2
n is the right rate to consider will become apparent later. It follows from

Corollary 1 below that the asymptotic distribution of H1n under Hn is given by:

H1n
L−→ χ2

1(a4
0σ
−4
0 T ) under Hn (20)

where χ2
1(a4

0σ
−4
0 T ) is a non-central Chi-squared distribution with one degree of freedom and non-

centrality parameter a4
0σ
−4
0 T . Intuitively, detecting the presence of noise becomes easier when the

noise is larger (a2
0 ↑), the signal volatility smaller (σ0 ↓), or the time window longer (T ↑).

2.2 Robustness to Stochastic Volatility and Non-Gaussian Noise

The above analysis certainly relies on a very special model. We now investigate the asymptotic

properties of the same Hausman test (16) in a more realistic setting where volatility is possibly

stochastic and the microstructure noise is not necessarily Gaussian. Quite remarkably, the same

estimator σ̂2
MLE from what is now potentially a misspecified likelihood can still be employed. In that

scenario, the likelihood estimator σ̂2
MLE from above can be regarded as a quasi-maximum likelihood

estimator (QMLE) in the sense of White (1982).

We generalize (5) by supposing that the log price Xt follows a continuous Itô semimartingale,

namely

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs, (21)

7



where bs is locally bounded, and σs is another Itô semimartingale, potentially with jumps. The

observed log prices continue to be given by (6)

X̃i∆n = Xi∆n + anUi, for 0 ≤ i ≤ n = T/∆n,

where U is an i.i.d. noise, now not necessarily Gaussian, but with mean 0, variance 1, and a finite

fourth moment.

We use the same estimators (σ̂2
MLE, â

2
MLE) obtained by maximizing the (now possibly misspecified)

log-likelihood (13) and consider the same Hausman test statistic as above, i.e., (16)-(17), despite a

different asymptotic variance estimator to be given below. In what follows, we investigate the

asymptotic properties of Hausman test under the null hypothesis H0 : a2
n = 0, the alternative

H1 : a2
n = a2

0 > 0, and the sequence of local alternatives Hn : a2
n = a2

0∆
3/2
n .

Under the alternative H1, σ̂2
RV remains inconsistent as before and explodes at the rate Op(∆

−1
n ),

similarly to what happens in (8). As for the MLE estimator, Xiu (2010) derived the asymptotic

distribution of (σ̂2
MLE, â

2
MLE): ∆
−1/4
n

(
σ̂2

MLE − 1
T

∫ T
0 σ2

sds
)

∆
−1/2
n

(
â2

MLE − a2
0

)
 (22)

L−s−→MN

( 0

0

)
,

 5a0(
∫ T
0 σ4

sds)

T 3/2(
∫ T
0 σ2

sds)
1/2 +

3a0(
∫ T
0 σ2

sds)
3/2

T 5/2 0

0
2a40+cum4[U ]

T


 ,

where cum4[U ] is the fourth cumulant of U , L-s denotes stable convergence in law, andMN denotes

a mixture of normals.

Since the setting is now nonparametric in the sense that the distribution of the log returns under

(21) is not specified, the efficiency of σ̂2
RV is not as well defined as in the parametric setting, see, e.g.,

Renault et al. (2015). Therefore, we need to analyze the joint asymptotic behavior of σ̂2
MLE and σ̂2

RV.

We start by adopting a re-parametrization of the quasi-log-likelihood (13) from (σ2, a2) to (σ2, η):

L(σ2, η) = −n
2

log(2π)− 1

2
log det(Σ)− 1

2
Y ᵀΣ−1Y, (23)

where Σ = σ2∆nIn + η∆nJn. For σ̂2
MLE under H0, the true value of the nuisance parameter a2

is on the boundary, i.e., a2 = 0, which would lead to a non-Gaussian asymptotic distribution of

(σ̂2
MLE, η̂MLE). To avoid this complication, we extend the parameter space of η to allow negative

values, to the extent that the covariance matrix Σ remains positive definite. Based on the new

parametrization, it is easy to observe that η > −σ2/4 is a sufficient condition. We thereby impose

in our implementation that the parameter space is a compact set that satisfies this constraint, e.g.,

Θ = {(σ2, η)|0 < ε1 ≤ σ2 + 4η ≤ ε2, ε3 ≤ σ2 ≤ ε4}.
Next we provide a general result, which we will use to derive the asymptotic distribution of the

Hausman test under H0 as well as under Hn:
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Theorem 1. Suppose that either a2
n = a2

0∆γ0
n with either γ0 ≥ 3/2 and a2

0 > 0 or γ0 = 0 and a2
0 = 0

holds. Then the QMLE (σ̂2
MLE, η̂MLE) that maximizes (23) with respect to (σ2, η) and the realized

volatility σ̂2
RV jointly satisfy:

∆−1/2
n


σ̂2

MLE − 1
T

∫ T
0 σ2

sds

η̂MLE − a2
0∆γ0−1

n

σ̂2
RV − 1

T

∫ T
0 σ2

sds

 L−s−→WT , (24)

where L-s denotes stable convergence in law towards a variable, WT is defined on an extension of

the original probability space, which conditionally on F , is a three-dimensional Gaussian random

variable with covariance matrix given by

E(WTWᵀ
T |F) =

1

T 2

∫ T

0
σ4
sds×


6 −2 2

−2 1 0

2 0 2

 .

Theorem 1 implies that

AVAR
(
σ̂2

MLE − σ̂2
RV

)
= AVAR

(
σ̂2

MLE

)
−AVAR

(
σ̂2

RV

)
=

4

T 2

∫ T

0
σ4
sds, (25)

hence the Hausman test statistic (16) in this nonparametric setting remains valid, except that we

now need a new consistent estimator for AVAR
(
σ̂2

MLE − σ̂2
RV

)
that is valid under the model (21).

For this purpose, we use the following quarticity estimator:

V̂2n =
4

T 2
Q̂2n, where Q̂2n =

1

3∆n

n∑
i=1

Y 4
i

p−→
∫ T

0
σ4
sds, under H0. (26)

With this V̂2n, we define the test statistic as

H2n = ∆−1
n

(σ̂2
MLE − σ̂2

RV)2

V̂2n

. (27)

We then show that

H2n
L−→ χ2

1, under H0. (28)

Under H1, V̂2n = Op(∆
−2
n ), hence

H2n = Op(∆
−1
n ), under H1. (29)

We can also calculate the local power for H2n. The size, power, and local power results for the test

are summarized in the next corollary:

Corollary 1. The test statistic H2n has asymptotic size α under the null hypothesis H0 : a2
n = 0 and

is consistent under the alternative hypothesis H1 : a2
n = a2

0 > 0, that is,

P (H2n > c1−α|H0)→ α and P (H2n > c1−α|H1)→ 1,
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where c1−α is the (1 − α)-quantile of the Chi-squared distribution with the degree of freedom being

equal to 1. Moreover, H2n follows a noncentral Chi-squared distribution with noncentrality parameter

a4
0T

2
(∫ T

0 σ4
sds
)−1

and one degree of freedom, under the sequence of local alternative hypotheses

Hn : a2
n = a2

0∆
3/2
n .

2.3 Robustness to Jumps

Another important restriction we imposed in previous sections is the absence of jumps in log-prices.

Yet, the presence of jumps is a salient feature of the data, see, e.g., Aı̈t-Sahalia and Jacod (2012).

In this section, we modify the test statistic so that it becomes robust to jumps.

Assume now that, as a further generalization to (16), the log-price Xt follows a possibly discon-

tinuous Itô semimartingale, with the following standard representation:

Xt = X0 +

∫ t

0
bs ds+

∫ t

0
σsdWs + (δ1‖δ‖≤1) ∗ (µ− ν)t + (δ1{‖δ‖>1}) ∗ µt, (30)

where µ is a Poisson random measure on R+×Rd with the compensator ν(dt, dx) = dt⊗ ν̄(dx), and

ν̄ is a σ-finite measure. Moreover, ‖δ(ω, t, z)‖ ∧ 1 ≤ Γn(z) for all (ω, t, z) with t ≤ τn(ω), where (τn)

is a localizing sequence of stopping times and each function Γn satisfies
∫

Γn(z)γ ν̄(dz) <∞, for some

γ < 1 (see Aı̈t-Sahalia and Jacod (2014), Chapter 1, for further details, definitions and explanations

about the model and the notation.)

Under the dynamics (30), the simple estimators σ̂2
RV and σ̂2

MLE we employed above no longer

estimate the volatility of the process. Nevertheless, they remain useful candidates to test for the

presence of noise, for the following reason. When jumps are present, σ̂2
MLE and σ̂2

RV under H0

now become consistent estimators of the total quadratic variation of the price process, including

continuous and jump parts, with σ̂2
RV being a more efficient estimator. Under H1, the consistency

remains true for σ̂2
MLE but not for σ̂2

RV, and we can exploit this fact to construct a Hausman test

statistic for the presence of noise. More specifically:

Theorem 2. Suppose that either a2
n = a2

0∆γ0
n with either γ0 ≥ 3/2 and a2

0 > 0 or γ0 = 0 and a2
0 = 0

holds. Then the QMLE (σ̂2
MLE, η̂MLE) that maximizes (23) with respect to (σ2, η) and the realized

volatility σ̂2
RV jointly satisfy:

∆−1/2
n


σ̂2

MLE − 1
T

(∫ T
0 σ2

sds+
∑

s≤T (∆Xs)
2
)

η̂MLE − a2
0∆γ0−1

n

σ̂2
RV − 1

T

(∫ T
0 σ2

sds+
∑

s≤T (∆Xs)
2
)
 L−s−→WT + ZT , (31)

where WT is the same as in Theorem 1, and ZT is defined on the same extension of the original

10



probability space as WT is, which is F-conditionally centered, and its covariance matrix is given by:

E(ZTZᵀ
T |F) =

∑
s≤T

(∆Xs)
2
(
σ2
s− + σ2

s

)
×


6 −2 2

−2 1 0

2 0 2

 .

Moreover, Z1,T −Z3,T and Z2,T are F-conditionally Gaussian random variables.

Therefore, we can construct a Hausman test statistic for H0 as follows:

H3n = ∆−1
n

(σ̂2
MLE − σ̂2

RV)2

V̂3n

, (32)

where, writing un = α̃∆$
n with 1/(4− 2γ) ≤ $ < 1/2, and choosing kn such that kn∆n → 0,

V̂3n =
4

T 2
Q̂3n,

Q̂3n =
1

3∆n

n∑
i=1

Y 4
i · 1{|Yi|≤un} +

n−kn∑
i=kn+1

Y 2
i · 1{|Yi|>un} · (σ̂

2
i∆n

+ σ̂2
(i−kn−1)∆n

), (33)

σ̂2
i∆n

=
1

kn∆n

kn∑
j=1

Y 2
i+j · 1{|Yi+j |≤un}.

By (10.24) and (10.27) of Aı̈t-Sahalia and Jacod (2014), V̂3n is a consistent estimator of the asymp-

totic variance, i.e., AVAR
(
σ̂2

MLE − σ̂2
RV

)
.

As above, we have

H3n
L−→ χ2

1 under H0. (34)

The behavior of H3n is further characterized by:

Corollary 2. The test statistic H3n has asymptotic size α under the null hypothesis H0 : a2
n = 0 and

is consistent under the alternative hypothesis H1 : a2
n = a2

0 > 0, that is,

P (H3n > c1−α|H0)→ α and P (H3n > c1−α|H1)→ 1,

where c1−α is the (1 − α)-quantile of the Chi-squared distribution with the degree of freedom being

equal to 1. Moreover, H3n follows a noncentral Chi-squared distribution with noncentrality parameter

a4
0T

2
(∫ T

0 σ4
sds+

∑
s≤T (∆Xs)

2(σ2
s− + σ2

s)
)−1

and one degree of freedom, under the sequence of local

alternative hypotheses Hn : a2
n = a2

0∆
3/2
n .

We have shown that the Hausman tests have power to detect i.i.d. noise with sufficiently large

variance. Our conjecture is that such tests also have power for stationary noise, an investigation

which we leave for future work
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3 Alternative Tests for the Presence of Noise

In this section, we develop alternative tests for the presence of noise in high frequency data. The first

is based on comparing â2
MLE to 0; the second consists in testing whether the first-order autocorrelation

of log-returns is 0, a distinctive implication in light of (12); the third is another Hausman test, but

one that compares σ̂2
RV to a different noise-robust estimator that is based on pre-averaging the data,

σ̂2
AVG.

3.1 Testing Whether a2 = 0

Given that the likelihood approach of Section 2 estimates jointly the volatility of the price and that

of the noise, we can test for the presence of noise by testing directly whether the noise variance

is zero. Recall that our estimator of noise variance â2
MLE = η̂MLE∆n can take negative values, as

discussed above. By Theorem 2, the estimator satisfies the following central limit theorem:

∆−3/2
n

(
â2

MLE − a2
0∆γ0

n

) L−s−→W2,T + Z2,T , (35)

under the null hypothesis H0 : a2
0 = 0, as well as the local alternative hypothesis Hn : a2

n = a2
0∆γ0

n ,

where a2
0 > 0 and γ0 ≥ 3/2. Therefore, we can construct a Student-t test using â2

MLE, standardized

by a quarticity estimator:

Tn = ∆−3/2
n

|â2
MLE|
Q̂

1/2
3n

. (36)

and we have

Tn
L−→ N (0, 1) under H0. (37)

By employing Q̂3n as the variance estimator in Tn, we achieve the same robustness as that of H3n

(stochastic volatility, non-Gaussian noise, and jumps). The following corollary summarizes the prop-

erties of Tn:

Corollary 3. The Student-t test statistic Tn has asymptotic size α under the null hypothesis H0 :

a2
n = 0 and is consistent under the alternative hypothesis H1 : a2

n > 0, that is,

P
(
|Tn| > t1−α/2|H0

)
→ α and P

(
|Tn| > t1−α/2|H1

)
→ 1,

where t1−α/2 is the (1 − α/2)-quantile of the standard Gaussian distribution. Moreover, T 2
n fol-

lows a noncentral Chi-squared distribution with degree of freedom 1 and the noncentrality parame-

ter a4
0T

2
(∫ T

0 σ4
sds+

∑
s≤T (∆Xs)

2(σ2
s− + σ2

s)
)−1

, under the sequence of local alternative hypotheses

Hn : a2
n = a2

0∆
3/2
n .
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3.2 Testing for the Presence of First-Order Autocorrelation in Log-Returns

From (12), we see that the noise introduces a departure from the i.i.d. nature of log-returns in the

form of a negative first order autocorrelation. The first order autocorrelation of log-returns can be

estimated using:

ρ̂(1)n =

∑n−1
j=1 YjYj+1∑n
j=1 Y

2
j

, (38)

which, in our high-frequency setting and under the null H0 : a2
0 = 0, i.e., ρ(1) = 0, is an estimator

with the following property:

∆−1/2
n ρ̂(1)n

L−s−→MN

0,

∫ T
0 σ4

sds+
∑

s≤T (∆Xs)
2(σ2

s− + σ2
s)(∫ T

0 σ2
sds+

∑
s≤T (∆Xs)2

)2

 . (39)

This is shown in Lemma 1 in the appendix. Therefore, the asymptotic variance reduces to T−1

(corresponding to the the classical behavior of ρ̂(1)n in low frequency time series), if volatility is

constant and jumps are absent.

To construct a feasible test for the null hypothesis that ρ(1) = 0, we propose the following

statistic:

ACn = ∆−1/2
n

∑n−1
j=1 YjYj+1

Q̂
1/2
3n

(40)

and we have

ACn
L−→ N (0, 1) under H0. (41)

Again, by employing Q̂3n as the variance estimator in ACn, we achieve the same robustness as that

of H3n. The following corollary summarizes the properties of ACn:

Corollary 4. The autocorrelation-based test statistic ACn has asymptotic size α under the null

hypothesis H0 : a2
n = 0 and is consistent under the alternative hypothesis H1 : a2

n > 0, that is,

P
(
|ACn| > t1−α/2|H0

)
→ α and P

(
|ACn| > t1−α/2|H1

)
→ 1,

where t1−α/2 is the (1 − α/2)-quantile of the standard Gaussian distribution. Moreover, (ACn)2

follows a noncentral Chi-squared distribution with one degree of freedom and noncentrality parameter

a4
0T

2
(∫ T

0 σ4
sds+

∑
s≤T (∆Xs)

2(σ2
s− + σ2

s)
)−1

, under the sequence of local alternative hypotheses Hn :

a2
n = a2

0∆
3/2
n .

3.3 Hausman Test Based on a Pre-Averaging Volatility Estimator

In the same spirit as above, we can build an alternative Hausman test based now on comparing σ̂2
RV

with the pre-averaging volatility estimator σ̂2
AVG of Jacod et al. (2009). Specifically, the test statistic

13



we propose is

H4n = ∆−1/2
n

(
σ̂2

RV − σ̂2
AVG

)2
V̂ (σ̂2

AVG)
, (42)

where, with g = x ∧ (1− x), x ∈ [0, 1], φ(g) =
∫ 1

0 g(x)2dx,

σ̂2
AVG =

1

knφ(g)T

n−kn+1∑
i=1

((
Y
n
i

)2 − 1

2
Ŷ n
i

)
,

Y
n
i =

kn−1∑
j=1

g

(
j

kn

)
Yi+j−1, Ŷ n

i =

kn∑
j=1

(
g

(
j

kn

)
− g

(
j − 1

kn

))2

(Yi+j−1)2,

and kn is a tuning parameter controlling the size of the window over which the averaging takes place,

chosen such that kn
√

∆n = θ−1 ∈ (0,∞).

Because the pre-averaging estimator σ̂2
AVG converges at a slower rate ∆

−1/4
n , we must adopt a

different multiplier ∆
−1/2
n . To obtain the asymptotic variance of σ̂2

AVG, we rely on Theorem 16.6.2

in Jacod and Protter (2012) which yields

∆−1/4
n

σ̂2
AVG −

1

T

∫ T

0
σ2
sds+

∑
s≤T

(∆Xs)
2


L−s−→MN

0,
1

θT 2

∫ T

0
R
(
σ2
t , θ

2a2
n

)
dt+

∑
t≤T

S(∆Xt, σ
2
t , θ

2a2
n)

 , (43)

where, writing g′ as the derivative of g,

R (x, y) =
4

φ(g)2

(
Φ(g, g)x2 + 2Φ(g, g′)xy + Φ(g′, g′)y2

)
,

S(x, y, z) =
4

φ(g)2

(
Ψ1(g, g)x2y + Ψ2(g, g)x2y− +

(
Ψ1(g, g′) + Ψ2(g, g′)

)
x2z
)
,

Φ(g, h) =

∫ 1

0

∫ 1

t
g(u− t)g(u)du

∫ 1

t
h(v − t)h(v)dvdt,

Ψ1(g, h) =

∫ 1

0

(∫ 1

t
g(s)h(s+ t)ds

)2

dt, Ψ2(g, h) =

∫ 1

0

(∫ 1−t

0
g(s)h(s− t)ds

)2

dt.

Moreover, (43) holds no matter whether a2
n ≥ 0 or a2

n → 0. By Theorems 16.4.2, 16.5.1, and 16.5.4

in Jacod and Protter (2012), we have a consistent estimator of the asymptotic variance:

V̂ (σ̂2
AVG) =V̂1(σ̂2

AVG) + V̂2(σ̂2
AVG), where

V̂1(σ̂2
AVG) =

θ

φ(g)2T 2

n−kn+1∑
i=1

{
4Φ(g, g)

3φ(g)2
(Y

n
i )4 + 4

(
Φ(g, g′)

φ(g)φ(g′)
− Φ(g, g)

φ(g)2

)
(Y

n
i )2Ŷ n

i

+

(
Φ(g, g)

φ(g)2
− 2Φ(g, g′)

φ(g)φ(g′)
+

Φ(g′, g′)

φ(g′)2

)
(Ŷ n
i )2

}
· 1{|Y n

i |≤vn}
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p→ 1

θT 2

∫ T

0
R
(
σ2
t , θ

2a2
n

)
dt,

V̂2(σ̂2
AVG) =

4θ

k′nφ(g)2T 2

n−kn−k′n+1∑
i=k′n+1

|Y n
i |2 · 1{|Y n

i |>vn}

Ψ1(g, g)

φ(g)2

k′n∑
j=1

(
(Y

n
i+j)

2 − 1

2
Ŷ n
i+j

)
· 1{|Y n

i+j |≤vn}

+
Ψ2(g, g)

φ(g)2

k′n∑
j=1

(
(Y

n
i−j)

2 − 1

2
Ŷ n
i−j

)
· 1{|Y n

i−j |≤vn}
+

Ψ1(g, g′)

2φ(g)φ(g′)

k′n∑
j=1

(
Ŷ n
i+j

)
· 1{|Y n

i+j |≤vn}

+
Ψ2(g, g′)

2φ(g)φ(g′)

k′n∑
j=1

(
Ŷ n
i−j

)
· 1{|Y n

i−j |≤vn}


p→ 1

θT 2

∑
t≤T

S(∆Xt, σ
2
t , θ

2a2
n),

vn = ᾱ(kn∆n)$̄, k′n/kn →∞, k′n∆→ 0, and $ is some constant such that 1/(4−2γ) ≤ $ < 1/2. By

simple calculations based on our choice of the function g(·), we have Φ(g, g) = Ψ1(g, g) = Ψ2(g, g) =

151/80640, Φ(g, g′) = Ψ1(g, g′) = Ψ2(g, g′) = 1/96, and Φ(g′, g′) = 1/6.

Following the same pattern as before,

H4n
L−→ χ2

1 under H0

and furthermore:

Theorem 3. The test statistic H4n has asymptotic size α under the null hypothesis H0 : a2
n = 0 and

is consistent under the alternative hypothesis H1 : a2
n > 0, that is,

P (H4n > c1−α|H0)→ α and P (H4n > c1−α|H1)→ 1,

where c1−α is the (1 − α)-quantile of the Chi-squared distribution with the degree of freedom being

equal to 1. Moreover, H4n follows a noncentral Chi-squared distribution with noncentrality parameter

4a4
0θT

2
(∫ T

0 R(σ2
t , 0) +

∑
s≤T S(∆Xt, σ

2
t , 0)

)−1
and one degree of freedom, under the sequence of local

alternative hypotheses Hn : a2
n = a2

0∆
5/4
n .

4 Small Sample Comparisons

We now employ Monte Carlo simulations to compare in small samples the different tests above. We

simulate a Heston-type stochastic volatility model plus jumps in both price and volatility:

dXt =µdt+ σtdWt + dYt, (44)

dσ2
t =κ(θ − σ2

t )dt+ ξσtdBt + JtdNt, (45)
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where E(dWtdBt) = ρdt, ρ = −0.75, µ = 0.03, κ = 4, θ = 0.1, ξ = 0.8, log(Jt) ∼ N (−5, 1), Nt is

a Poisson process with intensity λ = 36, and Yt is a tempered-stable process (or CGMY process in

Carr et al. (2002)) with Lévy jump measure given by:

ν(x) =
c

|x|1+β
e−γ−|x| · 1{x<0} +

c

x1+β
e−γ+x · 1{x>0}, (46)

where γ+ = 3, γ− = 5, c = 1.7, and β = 0.8.

Additionally, we employ a log-volatility model specified as:

dXt =µdt+ σtdWt + dYt, (47)

σ2
t = exp(α+ βFt), dFt = κFtdt+ σdBt + JtdNt − λµJdt, (48)

where Jt ∼ N (µJ , σ
2
J), α = −2.8, β = 6, κ = −4, ρ = −0.8, σ = 0.8, µ = 0.03, λ = 25, µJ = 0.02,

and σJ = 0.02. The contribution of jumps to the total quadratic variation of the price process is

about 40-60% using these parameters.

The data are sampled at frequencies ranging from one observation every 5 seconds to one every

5 minutes, spanning T = 1 week, and different values of the variance a2 of the microstructure noise:

10−6, 10−7 and 10−8 for power evaluation, and 0 for size of the test evaluation. We simulate 1,000

paths. The likelihood-based estimators are tuning parameter-free, but to implement their asymptotic

variances, we need to choose a block size kn, as well as α and $ in the truncation threshold un.

We select kn = [n1/2], $ = 0.48, α̃ = α0( 1
T

̂∫ T
0 σ2

t dt)
1/2, and α0 = 3 (see Aı̈t-Sahalia and Jacod

(2014) for a discussion). For the pre-averaging estimator, we use the same kn, α0, and $. We choose

ᾱ = α0( 1
T

̂∫ T
0 σ2

t dtφ(g) + θ2â2
0φ(g′))1/2 and k′n = 2kn, as suggested in Aı̈t-Sahalia and Xiu (2016).

The results are not sensitive to the selection of these parameters, within a reasonable range.

We calculate H2n, H3n, H4n, Tn, and ACn respectively, for each sample simulated from above,

i.e., (44), (45), (47), and (48). Tables B.1 and B.2 show that H3n, Tn, and ACn have desired size

control at 5% level across all sampling frequencies. The power of these tests is also satisfactory when

sampling frequency is high. By contrast, the performance of H4n is not as desirable as that of H3n,

because the former relies on a volatility estimator that is not as efficient. H2n does not perform

well either, because it is not robust to the presence of jumps in the data. Using data re-generated

from the same models above except with jumps excluded in prices, H2n has good size control and

is as powerful as other tests. Figures B.1 - B.4 in the web appendix compare the histograms of the

test statistics H3n, H4n, Tn, and ACn with their asymptotic distributions under H0 for both the

Heston and log-volatility models. They match very well with the theoretical predictions. We thereby

recommend in practice the use of H3n for its robustness, as well as H2n if one wishes to use a simpler

test (without any tuning parameters) for certain dataset, for which price jumps can be ruled out by

prior information. Additionally, Tn and ACn can be employed to confirm the results of the Hausman

tests.
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5 Empirical Results: At What Frequency Does the Noise Start to

Bite?

We implement the test on intraday observations of constituents of the Dow Jones 30 index (DJI),

the S&P 100 index (OEX), and the S&P 500 index (INX) from January 2003 to December 2012,

obtained from the TAQ database. Including deletions and additions to the index, there are in total 39

stocks for DJI, 153 for OEX, and 848 for INX. As common in the literature, we include transactions

from three major exchanges: AMEX, NYSE, and NASDAQ. For each week and each stock of DJI

and OEX, we subsample the intraday returns at frequencies ranging from every 5 seconds to every

5 minutes, whereas for the INX constituents, we subsample the returns within a monthly window

at frequencies ranging from every 5 minutes to every 30 minutes. Overnight returns are excluded

to avoid dividend issuance, stock splits and other issues. These do not matter for the question we

address here.

One common practice to subsample the data uses the previous tick method, which relies on the

last transaction price prior to or at the sampling times. To ensure the consistency of this approach, it

is necessary to make sure that there is at least one transaction price between each sampling interval.

Otherwise, a zero-return would be generated by the previous tick method, which then can introduce

a bias to the autocorrelation of observations in the subsample. Typically, this is not a problem

for liquid stocks when sampling frequency is beyond every few seconds. For illiquid ones, however,

the “fabricated” zero returns are unavoidable using the previous tick sampling. Since Dow Jones

constituents are rather liquid, sampling every few seconds does not create many zero returns. For

the less liquid S&P 500 constituents, sampling beyond 5 minutes also reduces the amount of zero

returns.

We compute the likelihood estimators based on subsampled returns with fabricated zero returns

removed, while pretending that the sampling interval is constant. This amounts to estimating the

tick-time volatility instead of the calendar-time volatility. Since the noise is associated with tick

times, this strategy does not in principle affect the test results. In fact, if there exists a smooth

time-change between tick times and calendar times, as discussed in Aı̈t-Sahalia and Jacod (2014),

realized volatility remains the same after the time-change.1

We first compute the volatility signature plots in Figure 2, which compares the average volatility

estimates across different days and tickers for different sampling frequencies. We compare the esti-

mates using RV, QMLE, TSRV (from Zhang et al. (2005)), and the pre-averaging estimator. Clearly,

there is a large discrepancy between σ̂2
RV and the other, noise-robust estimators, and the difference

1The asymptotic distribution of σ̂2
RV in a more general irregular sampling setting has been discussed by, e.g., Mykland

and Zhang (2006) and Mykland and Zhang (2009), and further by Bibinger and Vetter (2015) for the case where jumps

also exist. This distribution is in general non-Gaussian, due to the irregularity of the sampling intervals near where

jumps occur.
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becomes quite sizable when the sampling frequency increases. Empirically, the Hausman tests will

quantify the extent to which the discrepancy visible on the curve between RV and the noise-robust

estimators is statistically meaningful at a given frequency.

Additionally, we plot in Figure 3 the number of trades per week and the first-order autocorrelation

of 1-second returns for 22 names that are part of the DJI throughout the sample. 1-second returns are

not employed in the test statistics; this is simply to validate (12). For most stocks in the index, the

numbers of trades peak during 2008, whereas the first-order autocorrelations shrink towards 0 over

the sampling period. This shows that returns sampled every second become less noisy, based on that

measure, despite the fact that the number of trades drops after the financial crisis. We also report in

Figure 4 the monthly average national best bid and offer (NBBO) spread (in percentage) across the

INX constituents, and the monthly average of total dollar volume over the sampling periods. These

are potential measures of market liquidity that will be related below to the results of the test.

We then apply the five test statistics H2n, H3n, H4n, ACn and Tn to the sample at different

frequencies of 5 and 30 seconds and 1 and 5 minutes, and summarize the percentage of rejections

of H0 among all combinations of names and weeks for each year in Table 3 (resp. Table 4) for DJI

(resp. OEX) constituents. The results show that at a given frequency, over time, the number of

rejections decreases, consistent with an overall improvement in liquidity over the decade covered by

the sample. The common practice of treating 5-minute returns as noise-free might be problematic

in the earlier years of the sample for DJI and OEX constituents, but is a reasonably safe choice for

data sampled after 2009. These numerical values are of course not meant to be treated as universal.

One major caveat is that they are obtained by examining a subset of the most liquid stocks

in one of the most liquid market in the world. For comparison purposes, we report in Table 5 the

corresponding results for the INX constituents then in Table 6 for the 30 least liquid INX constituents,

in terms of the percentage bid-ask spreads, at frequencies of 5, 10, 15 and 30 minutes. The results

show that, even among stocks that belong to the S&P 500 index, 5 minute returns cannot be treated

as noise-free, even in the most recent part of the sample.

Finally, we compare in Figures 5, 6 and ?? the test statistic H3n with standard measures of

liquidity, i.e., the number of non-zero returns, bid-ask spreads (in percentage), and total dollar

volume for 2003 and 2012, respectively. We find, reassuringly, that more liquidity in the traditional

sense correlates with a lower value of the noise test statistic. In particular, the percentage bid-ask

spread decreases dramatically from 2003 to 2012, leading to a shift of test statistics towards 0 (fewer

rejections). However, the relationship between any one of these measures and the noise statistic is far

from perfectly predictive, showing that the test for the presence of noise cannot be simply replaced

by a computation of a liquidity measure.
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6 Conclusions

Just like one is concerned in a regression about the potential endogeneity of the regressors, one

is concerned here about the potential presence of microstructure noise. Just like one can rely on

a statistical methodology to determine when endogeneity is sufficiently small to be tolerated, one

would like a statistical methodology to determine at what sampling frequency the noise becomes

sufficiently small to be tolerated or vice versa sufficiently large that noise-robust estimators should

be employed. This paper proposes a variety of tests for this purpose.

We put the emphasis on assessing the deviations among different volatility estimators for the

purpose of testing whether microstructure noise mattered in a given sample. The same testing idea

can in principle be employed to compare other types of estimators, for instance estimators of the

jump characteristics of the process. We find that the common practice of treating 5-minute returns

as noise-free might be problematic in the earlier years of the sample for Dow Jones and S&P 100

constituents, but is a reasonably safe choice for data sampled after 2009 for these stocks, but not

for all the S&P 500 stocks. The ease of implementing these tests means that repeating the exercise

on any sample under consideration should become standard practice before considering any high

frequency econometric procedure that is not noise-robust by construction.
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Panel A Heston Model with Jumps

∆n = 5 seconds ∆n = 30 seconds
5% level a2

0 H2n H3n Tn ACn H4n H2n H3n Tn ACn H4n

Size 0 0.0 4.7 4.8 4.7 7.4 0.3 5.9 5.6 5.8 8.0
10−8 14.9 96.0 95.9 95.9 38.6 0.0 12.0 11.6 11.9 7.3

Power 10−7 60.4 100.0 100.0 100.0 97.9 25.8 90.1 90.0 90.1 37.3
10−6 93.0 100.0 100.0 100.0 98.8 70.5 99.6 99.6 99.6 98.0

∆n = 1 minute ∆n = 5 minutes
a2

0 H2n H3n Tn ACn H4n H2n H3n Tn ACn H4n

Size 0 0.2 5.5 5.6 5.4 6.2 0.9 5.7 5.8 6.0 8.6
10−8 0.2 6.7 6.5 6.8 8.8 1.0 5.3 5.3 5.2 7.8

Power 10−7 10.5 54.9 53.8 54.8 16.9 1.4 7.9 7.6 8.1 9.1
10−6 57.2 99.0 99.0 99.0 91.4 22.0 49.6 48.3 49.2 27.6

Panel B Heston Model without Jumps

∆n = 5 seconds ∆n = 30 seconds
5% level a2

0 H2n H3n Tn ACn H4n H2n H3n Tn ACn H4n

Size 0 5.0 5.0 4.9 5.0 6.5 4.7 4.9 4.6 5.0 6.0
10−8 100.0 100.0 100.0 100.0 74.7 24.2 24.6 24.6 24.4 9.7

Power 10−7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 79.4
10−6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

∆n = 1 minute ∆n = 5 minutes
a2

0 H2n H3n Tn ACn H4n H2n H3n Tn ACn H4n

Size 0 5.8 6.3 6.2 6.5 6.2 4.4 4.4 5.3 4.6 9.0
10−8 7.7 7.7 7.3 7.9 7.0 4.7 4.8 5.1 4.8 8.8

Power 10−7 92.8 92.8 92.5 92.9 33.9 6.7 7.0 7.9 7.1 10.6
10−6 100.0 100.0 100.0 100.0 100.0 79.2 79.5 78.1 79.5 51.7

Table 1: Simulation Results: Percentage of Rejections of H0 for the Heston Model
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Panel A Log-Volatility Model with Jumps,

∆n = 5 seconds ∆n = 30 seconds
5% level a2

0 H2n H3n Tn ACn H4n H2n H3n Tn ACn H4n

Size 0 0.0 5.2 5.1 5.2 9.0 0.0 5.5 5.3 5.5 7.5
10−8 16.4 96.9 96.9 96.9 49.5 0.5 19.8 19.5 19.4 10.2

Power 10−7 57.5 100.0 100.0 100.0 95.9 21.8 94.7 94.7 94.5 49.2
10−6 89.5 100.0 100.0 100.0 95.4 65.0 99.9 99.9 99.9 98.4

∆n = 1 minute ∆n = 5 minutes
a2

0 H2n H3n Tn ACn H4n H2n H3n Tn ACn H4n

Size 0 0.0 5.5 5.6 5.5 7.1 0.6 5.7 5.7 5.7 7.7
10−8 0.3 8.9 8.7 8.8 9.4 0.6 7.9 7.6 7.9 7.1

Power 10−7 10.7 67.5 67.5 67.3 24.9 1.0 8.1 7.5 8.2 9.2
10−6 50.9 98.2 98.1 98.1 90.9 26.1 57.4 56.0 56.2 37.2

Panel B Log-Volatility Model without Jumps

∆n = 5 seconds ∆n = 30 seconds
5% level a2

0 H2n H3n Tn ACn H4n H2n H3n Tn ACn H4n

Size 0 5.4 5.6 5.5 5.6 5.4 4.9 5.3 5.4 5.3 5.4
10−8 99.9 99.9 99.9 99.9 90.3 46.7 47.7 47.0 47.5 13.2

Power 10−7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 90.1
10−6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

∆n = 1 minute ∆n = 5 minutes
a2

0 H2n H3n Tn ACn H4n H2n H3n Tn ACn H4n

Size 0 4.5 4.8 4.9 4.7 6.2 5.4 5.9 5.5 6.1 10.5
10−8 11.0 11.5 11.0 11.3 9.2 5.4 5.7 5.9 5.7 10.0

Power 10−7 97.5 97.6 97.5 97.6 57.5 10.7 11.0 11.0 10.9 14.2
10−6 100.0 100.0 100.0 100.0 100.0 90.6 91.0 90.6 90.4 68.9

Table 2: Simulation Results: Percentage of Rejections of H0 for Log-Volatility Model

23



∆n = 5 seconds ∆n = 30 seconds

Year H2n H3n Tn ACn H4n H2n H3n Tn ACn H4n

2003 85.10 87.06 86.67 88.10 73.33 51.83 52.09 52.29 52.03 53.99
2004 86.35 87.05 86.86 88.14 72.12 54.36 54.42 54.17 54.74 51.28
2005 82.68 83.33 83.14 85.75 75.42 57.84 57.84 57.45 58.43 56.99
2006 85.32 85.90 85.90 87.50 72.63 58.91 58.01 57.82 58.78 55.77
2007 72.76 73.85 73.97 74.74 70.58 40.13 39.36 39.10 40.45 53.78
2008 54.73 55.80 55.13 55.47 57.87 25.73 23.60 23.73 23.20 47.93
2009 56.99 59.93 59.28 60.46 47.06 31.37 30.98 30.65 30.00 38.50
2010 46.86 53.01 52.69 53.21 42.05 27.82 28.08 27.88 28.08 40.90
2011 42.88 48.72 48.46 49.23 35.58 23.85 23.46 23.27 23.53 33.53
2012 33.33 42.35 42.42 42.55 28.04 19.93 21.76 22.09 21.63 32.03

∆n = 1 minute ∆n = 5 minutes

Year H2n H3n Tn ACn H4n H2n H3n Tn ACn H4n

2003 42.55 40.59 40.59 39.08 46.01 14.71 9.22 8.50 9.08 28.76
2004 43.53 41.35 41.28 41.79 42.31 13.46 9.62 8.65 8.85 23.72
2005 44.12 42.75 42.75 42.22 48.76 15.42 11.44 10.39 10.33 31.31
2006 38.33 35.96 35.71 35.32 46.60 12.05 8.33 8.08 7.88 32.50
2007 22.88 20.96 20.19 19.10 47.76 10.06 6.22 5.77 4.42 32.95
2008 17.60 15.20 14.53 14.00 43.13 8.80 5.27 5.00 4.07 28.13
2009 23.33 21.44 21.24 20.59 35.29 7.71 4.64 4.51 4.25 25.16
2010 23.59 22.31 22.37 21.22 39.23 9.49 6.28 5.90 4.81 31.60
2011 18.53 16.67 16.86 15.83 33.14 7.44 3.91 3.85 3.14 27.18
2012 14.58 13.86 13.59 13.59 33.14 7.45 4.71 4.05 3.92 30.20

Table 3: Percentage of Rejections Over Time of H0 at the 5% Level at Different Fre-
quencies: DJA Stocks
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∆n = 5 seconds ∆n = 30 seconds

Year H2n H3n Tn ACn H4n H2n H3n Tn ACn H4n

2003 79.86 82.14 81.90 83.59 68.76 54.29 55.22 55.22 55.02 54.33
2004 76.33 78.59 78.41 80.57 64.69 53.10 54.06 53.92 54.92 51.04
2005 76.18 78.57 78.34 81.23 67.73 54.98 55.55 55.32 56.45 56.00
2006 80.20 82.04 82.00 83.91 66.87 56.51 56.27 56.11 57.38 53.53
2007 80.00 80.85 80.79 81.32 72.57 45.81 45.02 44.57 46.32 54.60
2008 53.74 54.79 54.19 54.95 61.56 29.79 27.88 27.72 27.95 50.26
2009 52.52 55.33 54.26 56.04 47.33 28.15 27.96 27.70 27.39 38.87
2010 45.27 50.96 51.16 51.98 39.80 27.61 27.96 27.69 27.57 38.33
2011 44.39 50.75 50.75 51.47 32.84 23.65 23.94 23.57 23.67 31.41
2012 33.84 40.80 40.94 40.92 27.94 18.70 19.48 19.54 19.06 32.22

∆n = 1 minute ∆n = 5 minutes

Year H2n H3n Tn ACn H4n H2n H3n Tn ACn H4n

2003 44.78 43.84 43.78 42.90 47.33 17.33 12.80 12.71 12.71 31.39
2004 42.78 42.33 42.29 42.43 43.94 15.78 12.43 11.49 12.00 26.63
2005 43.30 42.45 42.57 41.98 49.32 19.02 15.18 14.59 14.18 34.82
2006 38.96 36.93 36.73 36.69 46.40 14.67 11.00 10.36 10.24 33.42
2007 25.66 23.83 23.09 22.23 47.77 10.43 6.89 6.43 5.96 33.68
2008 20.19 17.56 17.12 16.35 43.93 9.65 6.56 5.79 5.53 29.19
2009 22.09 20.70 20.30 19.87 36.13 7.52 5.07 4.89 4.80 25.93
2010 21.27 20.24 19.88 19.55 36.82 9.22 6.22 5.94 4.65 30.29
2011 17.14 15.35 15.08 14.92 31.25 7.25 3.88 3.86 3.02 26.53
2012 14.66 13.74 13.34 13.20 33.46 7.14 4.64 4.14 3.86 29.00

Table 4: Percentage of Rejections Over Time of H0 at the 5% Level at Different Fre-
quencies: S&P 100 Stocks
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∆n = 5 minutes ∆n = 10 minutes

Year H2n H3n Tn ACn H4n H2n H3n Tn ACn H4n

2003 32.01 28.20 27.92 27.68 31.63 14.70 11.10 10.90 11.02 20.25
2004 29.57 26.22 25.96 26.02 27.16 13.22 9.89 9.46 10.23 17.94
2005 34.32 30.69 30.02 29.75 36.51 14.63 11.10 10.74 10.20 24.52
2006 26.98 23.02 22.65 22.12 32.43 11.68 8.44 8.37 7.86 22.67
2007 16.40 13.72 13.41 12.76 32.60 9.03 6.27 6.14 5.71 23.60
2008 17.68 13.45 13.09 12.66 24.90 7.79 4.35 4.47 4.33 16.62
2009 12.89 9.80 9.56 9.31 24.51 5.99 4.04 3.80 3.76 18.87
2010 12.63 9.74 9.36 8.59 27.91 8.18 5.29 5.19 5.16 22.21
2011 11.99 8.97 8.74 7.86 22.57 7.32 4.52 4.25 4.46 18.52
2012 13.63 11.03 10.57 9.90 25.57 7.70 5.41 5.21 5.16 19.83

∆n = 15 minutes ∆n = 30 minutes

Year H2n H3n Tn ACn H4n H2n H3n Tn ACn H4n

2003 9.29 5.98 5.80 5.90 16.42 4.03 2.05 1.86 2.09 13.55
2004 7.97 5.11 5.03 5.17 15.71 3.40 1.54 1.38 1.61 11.45
2005 8.69 5.93 5.76 5.52 20.95 3.89 1.88 1.71 1.73 15.98
2006 9.13 6.02 5.87 5.60 20.25 4.78 2.76 2.61 2.60 16.39
2007 6.62 4.09 3.79 3.77 20.45 3.93 2.14 2.00 1.73 16.27
2008 4.89 2.50 2.39 2.47 13.71 2.94 1.34 1.17 1.42 10.96
2009 3.67 1.81 1.83 1.83 16.88 3.65 2.11 2.11 1.92 15.54
2010 4.86 2.92 2.71 2.73 19.73 2.94 1.36 1.26 1.13 16.12
2011 4.21 2.10 2.08 2.36 16.11 2.69 1.07 1.03 1.07 13.98
2012 4.39 2.70 2.61 2.46 16.73 2.77 1.36 1.15 1.52 14.16

Table 5: Percentage of Rejections Over Time of H0 at the 5% Level at Different Fre-
quencies: S&P 500 Stocks
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∆n = 5 minutes ∆n = 10 minutes

Year H2n H3n Tn ACn H4n H2n H3n Tn ACn H4n

2003 56.11 53.89 53.61 52.78 46.94 31.94 28.61 28.61 29.17 28.61
2004 50.00 47.78 47.78 48.33 47.22 26.94 23.33 23.33 23.61 27.78
2005 57.50 56.11 54.72 55.56 57.78 31.94 29.72 28.33 30.28 39.44
2006 57.22 54.44 54.44 53.89 49.17 26.67 24.17 23.33 23.06 27.50
2007 40.00 38.61 37.22 37.50 36.94 15.83 13.89 14.44 14.44 23.33
2008 23.33 21.11 20.28 19.44 18.33 10.56 8.06 8.06 7.50 12.50
2009 29.17 27.22 26.67 26.39 30.28 12.50 11.39 10.56 10.56 21.39
2010 29.17 26.94 26.67 25.28 35.00 15.83 13.06 12.50 12.50 24.72
2011 21.67 18.33 18.06 16.67 25.83 10.83 8.89 8.89 8.89 20.83
2012 29.72 27.22 27.78 26.39 32.78 15.83 10.83 11.39 10.83 25.00

∆n = 15 minutes ∆n = 30 minutes

Year H2n H3n Tn ACn H4n H2n H3n Tn ACn H4n

2003 17.22 13.89 13.89 14.17 21.11 5.28 3.89 3.06 4.17 13.06
2004 12.50 9.44 10.00 9.17 20.56 4.17 2.78 2.50 1.94 14.17
2005 21.11 18.61 18.61 17.22 30.56 6.67 6.11 6.11 6.11 21.67
2006 16.67 13.61 13.06 14.17 24.44 5.28 4.17 3.89 3.89 18.33
2007 12.78 10.00 9.17 9.72 20.00 5.00 3.89 3.61 3.06 15.28
2008 5.28 4.17 3.89 4.72 10.56 3.06 1.39 1.39 2.22 7.50
2009 7.78 5.28 5.28 6.11 14.72 3.33 1.94 1.94 1.94 11.39
2010 10.00 8.06 7.50 7.50 20.00 4.44 4.17 3.61 3.06 16.39
2011 4.44 3.33 3.89 3.89 15.00 4.17 1.39 1.67 1.11 15.28
2012 6.67 4.72 4.72 3.89 20.00 4.44 1.94 1.67 1.11 15.83

Table 6: Percentage of Rejections Over Time of H0 at the 5% Level at Different Fre-
quencies: Least Liquid S&P 500 Stocks
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Figure 1: The test measures whether the divergence of σ̂2
RV due to the noise, relative to a noise-robust

estimator such as σ̂2
MLE, is significant
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Figure 2: Average Signature Plot for the Dow Jones 30 Index Constituents
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Note: This figure reports the average estimates of annualized daily volatility across all Dow Jones 30 index

constituents from 2003 to 2012. Four volatility estimators are implemented: RV, MLE, TSRV and AVG.
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Figure 3: Time Series of the Number of Trades and First-Order Autocorrelation, DJI
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Note: This figure plots the time series of number of trades (blue, solid, left y-axis) and the first-order

autocorrelation of 1-second returns (red, dotted, right y-axis) for the 22 stocks that were included in the

Dow-Jones Industrials 30 index throughout the sample period 2003-2012.
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Figure 4: Bid-Ask Spread and Dollar Volume
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Note: This figure plots the time series of the monthly cross-sectional average NBBO bid-ask spread (in

percentage of NBBO price), (blue, dot-dashed) and the monthly average dollar volume (red, solid) for S&P

500 index constituents from 2003 to 2012. The y-axes on the left is the percentage, whereas the y-axes on the

right is the dollar volume.
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Figure 5: Test Statistics and Number of Non-Zero Returns
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Note: This figure is a scatterplot of the test statistic H3n averaged over 12 months (in logarithm) against the

average number of non-zero returns per month at 5-minute frequency for the S&P 500 index constituents of

2003 and 2012, respectively, along with the regression line for each year. The black dashed line marks the

95%-critical value. As expected, a higher number of non-zero returns is associated with a lower value of the

noise test statistic.
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Figure 6: Test Statistics and Bid-Ask Spreads
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Note: This figure plots the test statistic H3n averaged over 12 months (in logarithm) against the NBBO

bid-ask spread (in logarithm of the percentage of NBBO price) for S&P 500 index constituents of 2003 and

2012, respectively, along with the regression line for each year. The black dashed line marks the 95%-critical

value. As expected, a lower bid-ask spread is associated with a lower value of the noise test statistic.
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Figure 7: Test Statistics and Dollar Volume
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Note: This figure plots the test statistic H3n averaged over 12 months (in logarithm) against the total dollar

volume (in logarithm) for the S&P 500 index constituents of 2003 and 2012, respectively, along with the

regression line for each year. The black dashed line marks the 95%-critical value. As expected, a higher

trading volume is associated with a lower value of the noise test statistic.
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Appendix A Proofs

Let (Ω,F , {Ft},P) be a filtered probability space. K denotes a generic constant which may change

from line to line.

Appendix A.1 Proof of Theorem 1

Proof. To prove this, we follow the strategy suggested in Xiu (2010), i.e., we investigate the asymp-

totic behavior of the score vector. We only need to prove for the case γ0 > 0 and a2
0 > 0. The case

with γ0 = a2
0 = 0 is similar yet easier.

For any (σ2, η) ∈ Θ, we define

γ2 = η +
1

2

√
σ2(4η + σ2) +

1

2
σ2, φ = 1− 1

2η

√
σ2(4η + σ2) +

1

2η
σ2, (A.1)

and φ = 0 when η = 0.

It is easy to verify that −1 < φ < 1, and that Σ = ∆n

(
γ2(1− φ)2In + γ2φJn

)
, since

σ2 = γ2(1− φ)2, and η = γ2φ. (A.2)

By the calculations in Aı̈t-Sahalia et al. (2005), we have

det(Σ) = γ2n 1− φ2n+2

1− φ2
∆n
n, Σ−1 = ∆−1

n γ−2φ
|i−j| − φi+j − φ2n+2−(i+j) − φ2n+2−|i−j|

(1− φ2)(1− φ2n+2)
,

where we use the notation that φk = 1{k=0} if φ = 0 (Note that when φ = 0, Σ is diagonal).

Therefore, the likelihood can be rewritten as

L(γ2, φ) =− n

2
log 2π − n

2
log γ2∆n +

1

2
log(1− φ2)− 1

2
log(1− φ2n+2)

− 1

2γ2∆n

n∑
i=1

n∑
j=1

φ|i−j| − φi+j − φ2n+2−(i+j) − φ2n+2−|i−j|

(1− φ2)(1− φ2n+2)
YiYj .

We now focus on the asymptotic result of (γ̂2, φ̂), which will lead to the result for (σ̂2
MLE, η̂MLE),

since the change of variable in (A.1) and its inverse (A.2) are smooth.

Because −1 < φ < 1, φ2n+2 is exponentially small. Therefore, we obtain the following score

functions, up to some exponentially small terms:

Ψ1 =
1

n

∂L(γ2, φ)

∂γ2
= − 1

2γ2
+

1

2γ4(1− φ2)T

n∑
i=1

n∑
j=1

(
φ|i−j| − φi+j − φ2n+2−(i+j) − φ2n+2−|i−j|

)
YiYj ,

Ψ2 =
1

n

∂L(γ2, φ)

∂φ
= − φ

n(1− φ2)
− φ

γ2(1− φ2)2T

n∑
i=1

n∑
j=1

(
φ|i−j| − φi+j − φ2n+2−(i+j) − φ2n+2−|i−j|

)
YiYj

− 1

2γ2(1− φ2)T

n∑
i=1

n∑
j=1

(
|i− j|φ|i−j|−1 − |i+ j|φi+j−1

)
YiYj
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+
1

2γ2(1− φ2)T

n∑
i=1

n∑
j=1

(
(2n+ 2− (i+ j))φ2n+1−(i+j) + (2n+ 1− |i− j|)φ2n+1−|i−j|

)
YiYj .

Suppose Aij can take values from{
φ|i−j|, φi+j , φ2n+2−(i+j), φ2n+2−|i−j|, |i− j|φ|i−j|−1, |i+ j|φi+j−1,

(2n+ 2− (i+ j))φ2n+1−(i+j), (2n+ 1− |i− j|)φ2n+1−|i−j|
}
,

and denote that

ζ(1)ni =
(∆n

i X)2

∆n
−σ2

(i−1)∆n
, ζ(2)ni =

∆n
i X√
∆n

, ζ ′(r)ni = E
(
ζ(r)ni |F(i−1)∆n

)
, ζ ′′(r)ni = ζ(r)ni −ζ ′(r)ni .

By the standard estimates for continuous X, see e.g., Aı̈t-Sahalia and Jacod (2014), we have

|ζ ′(1)ni | ≤ K
√

∆n, E
(
|ζ(1)ni |m|F(i−1)∆n

)
≤ K.

Moreover, the following estimates hold even when X contains jumps:

|ζ ′(2)ni | ≤ K
√

∆n, E
(
|ζ(2)ni |m|F(i−1)∆n

)
≤ K∆

0∧(1−m
2

)
m . (A.3)

Therefore, it then follows from Doob’s inequality that

E

(
sup
l≤n

∣∣∣∣∣
l∑

i=1

Aiiζ(1)ni

∣∣∣∣∣
)
≤E

(
n∑
i=1

Aii
∣∣ζ ′(1)ni

∣∣)+

(
n∑
i=1

A2
iiE (ζ(1)ni )2

)1/2

≤K∆1/2
n

n∑
i=1

Aii +K

(
n∑
i=1

A2
ii

)1/2

≤

{
K∆

−1/2
n , if Aij = φ|i−j|,

K, otherwise.
(A.4)

Similarly, by successively applying Doob’s inequality and Cauchy-Schwarz inequality, we have

E

∣∣∣∣∣∣
n∑
i=1

i−1∑
j=1

Aijζ(2)nj ζ(2)ni

∣∣∣∣∣∣


≤E

 n∑
i=1

∣∣∣∣∣∣
i−1∑
j=1

Aijζ(2)nj

∣∣∣∣∣∣ ∣∣ζ ′(2)ni
∣∣+ E


n∑
i=1

 i−1∑
j=1

Aijζ(2)ni

2

E
(
(ζ(2)ni )2|F(i−1)∆n

)
1/2

≤K∆1/2
n

n∑
i=1


i−1∑
j=1

Aij∆
1/2
n +

 i−1∑
j=1

A2
ij

1/2
+


n∑
i=1

 i−1∑
j=1

Aij

2

∆n +

i−1∑
j=1

A2
ij


1/2

≤

{
K∆

−1/2
n , if Aij = φ|i−j| or |i− j|φ|i−j|−1,

K, otherwise.
(A.5)
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Further, by Doob’s inequality and Cauchy-Schwarz inequality again, we have, for all Aij ,

E

∣∣∣∣∣∣
n∑
i=1

n∑
j=1

Aij(Uj − Uj−1)ζ(2)ni

∣∣∣∣∣∣


≤
n∑
i=1

E

∣∣∣∣∣∣
n∑
j=1

Aij(Uj − Uj−1)

∣∣∣∣∣∣ |ζ ′(2)ni |+ E


n∑
i=1

 n∑
j=1

Aij(Uj − Uj−1)

2

E
(
(ζ(2)ni )2|F(i−1)∆n

)
1/2

≤K∆(γ0−1)/2
n . (A.6)

Finally, using Cauchy-Schwarz inequality,

E

 n∑
i=1

n∑
j=1

Aij

{
(Uj − Uj−1)(Ui − Ui−1)− E ((Uj − Uj−1)(Ui − Ui−1))

}2

=
n∑

i,j,i′,j′=1

AijAi′j′
(
cum4

[
Ui − Ui−1, Uj − Uj−1, Ui′ − Ui′−1, Uj′ − Uj′−1

]
+
(
2 · 1{k=k′} − 1{k=k′−1} − 1{k=k′+1}

) (
2 · 1{l=l′} − 1{l=l′−1} − 1{l=l′+1}

))
≤K∆2γ0−1

n . (A.7)

The above calculations (A.4) - (A.7) lead to

Ψ1 =− 1

2γ2
+

1

2γ4(1− φ2)T

n∑
i=1

n∑
j=1

φ|i−j|
(
∆n
i X∆n

jX + E(Ui − Ui−1)(Uj − Uj−1)
)

+Op(∆n),

(A.8)

Ψ2 =− φ

γ2(1− φ2)2T

n∑
i=1

n∑
j=1

φ|i−j|
(
∆n
i X∆n

jX + E(Ui − Ui−1)(Uj − Uj−1)
)

− 1

2γ2(1− φ2)T

n∑
i=1

n∑
j=1

|i− j|φ|i−j|−1
(
∆n
i X∆n

jX + E(Ui − Ui−1)(Uj − Uj−1)
)

+Op(∆n),

(A.9)

because the other terms do not contribute to the asymptotic variances on the leading order, given

that γ0 ≥ 3/2.

We introduce the following two functions:

Ψ1 =− 1

2γ2
+

1

2γ4(1− φ2)T

(∫ T

0
σ2
sds+ 2(1− φ)Ta2

0∆γ0−1
n

)
, (A.10)

Ψ2 =− φ

γ2(1− φ2)2T

(∫ T

0
σ2
sds+ 2(1− φ)Ta2

0∆γ0−1
n

)
+

a2
0∆γ0−1

n

γ2(1− φ2)
. (A.11)

Since E(Ui − Ui−1)(Uj − Uj−1) = a2
0∆γ0

n

(
21{i=j} − 1{i=j−1} − 1{i=j+1}

)
, and

E

(
n∑
i=1

σ2
(i−1)∆n

∆n −
∫ T

0
σ2
sds

)2

≤ K
n∑
i=1

∫ i∆n

(i−1)∆n

E
(∥∥∥σ2

s − σ2
(i−1)∆n

∥∥∥2
|F(i−1)∆n

)
ds ≤ K∆n,
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it follows from (A.4) - (A.7) that∥∥Ψi −Ψi

∥∥ = Op(∆
1/2
n ), i = 1, 2.

This also holds uniformly over the compact parameter space Θ in terms of (φ, η), i.e., −1 + ε1 ≤
φ ≤ 1 − ε1, ε2 ≤ γ2 ≤ ε3, because Ψi and Ψi can be written as the differences of convex functions

and a slight modification of Theorem 10.8 in Rockafellar (1997). Suppose (γ2∗, φ∗) is the solution of

Ψ = 0. By Theorem 2 of Xiu (2010), we establish: γ̂2 − γ2∗ = op(1) and φ̂− φ∗ = op(1). Moreover,

using (A.1), (A.10), and (A.11), we derive that

σ2∗ = γ2∗(1− φ∗)2 =
1

T

∫ T

0
σ2
sds, η∗ = γ2∗φ∗ = a2

0∆γ0−1
n ,

hence the desired consistency of (σ̂2
MLE, η̂MLE) follows from the consistency of (γ̂2, φ̂).

We now derive the joint CLT of Ψi −Ψi, i = 1, 2, evaluated at (γ2∗, φ∗), along with σ̂2
RV, so the

CLT of (σ̂2
MLE, η̂MLE, σ̂

2
RV) will follow directly from the “sandwich” formula and the “Delta” method,

using Theorem 3 of Xiu (2010).

Using (A.1), we have γ2∗ = σ2∗ + o(1), and φ∗ = a2
0∆γ0−1

n + O(∆
1/2
n ) = O(∆

1/2
n ). Therefore,

evaluated at (γ2∗, φ∗), the scaled difference between Ψi and Ψi satisfies

∆−1/2
n Ψ1(γ2∗, φ∗) =

1

2γ∗4T

(
n∑
i=1

(∆n
i X)2 −

∫ T

0
σ2
sds

)
+Op(∆

1/2
n ),

∆−1/2
n Ψ2(γ2∗, φ∗) =− 1

γ∗2T

n∑
i=1

∆n
i X∆n

i−1X +Op(∆
1/2
n ),

so that we can apply Theorem 11.2.1 in Jacod and Protter (2012), and obtain

∆−1/2
n

(
Ψ1(γ2∗, φ∗),Ψ2(γ2∗, φ∗), σ̂2

RV −
1

T

∫ T

0
σ2
sds

)ᵀ
L−s−→ W̄T ,

where W̄T is defined on the extension of the original probability space, which is a F-conditional

Gaussian variable with the covariance matrix given by

E
(
W̄T W̄ᵀ

T |F
)

=


(2γ8∗)−1 0 (γ4∗)−1

0 (γ4∗)−1 0

(γ4∗)−1 0 2

× 1

T 2

∫ T

0
σ4
sds.

Moreover, by (A.10) and (A.11) we have

(
−∇Ψ(γ2∗, φ∗) 0

0 1

)
=


(2γ4∗)−1 0 0

0 1 0

0 0 1

+ op(1). (A.12)
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By entry-wise Taylor expansion of the vector-valued function (Ψ1,Ψ2) and the “sandwich” formula,

we have the asymptotic distribution of (γ̂2, φ̂, σ̂2
RV), which is an F-conditional centered Gaussian

variable with covariance matrix given by

(
−∇Ψ(γ2∗, φ∗) 0

0 1

)−1

E
(
W̄T W̄ᵀ

T |F
)( −∇Ψ(γ2∗, φ∗) 0

0 1

)−1

=


2 0 2

0 γ−4∗ 0

2 0 2

× 1

T 2

∫ T

0
σ4
sds.

Finally, using (A.2) and the “Delta” method, we have the asymptotic distribution of (σ̂2
MLE, η̂MLE, σ̂

2
RV),

WT , defined on the extension of the original probability space. Conditional on F , it is Gaussian vari-

able with covariance matrix given by

E
(
WTWᵀ

T |F
)

=


1 −2γ2∗ 0

0 γ2∗ 0

0 0 1




2 0 2

0 γ−4∗ 0

2 0 2




1 0 0

−2γ2∗ γ2∗ 0

0 0 1

× 1

T 2

∫ T

0
σ4
sds

=


6 −2 2

−2 1 0

2 0 2

× 1

T 2

∫ T

0
σ4
sds.

Appendix A.2 Proof of Corollary 1

Proof. By Theorem 1, we have

∆−1/2
n

(
σ̂2

MLE − σ̂2
RV

) L−s−→MN (0,
4

T 2

∫ T

0
σ4
sds

)
.

It then follows from the consistency of V̂2n that

H2n
L−→ χ2

1, under H0.

Moreover, under H1, by (22) we have σ̂2
MLE = Op(1), whereas

σ̂2
RV =

1

T

∫ T

0
σ2
sds+

2a2
0

∆n
+ op(1).

Also, V̂2n = Op(∆
−2
n ). Therefore, H2n = Op(∆

−1
n ). Finally, under Hn, we have

σ̂2
RV =

1

T

{
n∑
i=1

(∆n
i X)2 + 2an

n∑
i=1

∆n
i X(Ui − Ui−1) + a2

n

n∑
i=1

(Ui − Ui−1)2

}
.

It is easy to derive that

n∑
i=1

(Ui − Ui−1)2 = 2n+Op(n
1/2),

n∑
i=1

(∆n
i X)(Ui − Ui−1) = Op(1),
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hence we have

∆−1/2
n

(
σ̂2

RV −
1

T

∫ T

0
σ2
sds

)
= 2a2

0 + ∆−1/2
n

(
1

T

n∑
i=1

(∆n
i X)2 − 1

T

∫ T

0
σ2
sds

)
+ op(1).

Combining this with Theorem 1, we have:

∆−1/2
n

(
σ̂2

MLE − σ̂2
RV

)
=∆−1/2

n

(
σ̂2

MLE −
1

T

∫ T

0
σ2
sds

)
+ ∆−1/2

n

(
1

T

∫ T

0
σ2
sds− σ̂2

RV

)
L−s−→MN

(
2a2

0,
4

T 2

∫ T

0
σ4
sds

)
.

On the other hand, we have

V̂2n =
4

3∆nT 2

n∑
i=1

{
(∆n

i X)4 + a4
n(Ui − Ui−1)4 + 4an (∆n

i X)3 (Ui − Ui−1)

+6a2
n (∆n

i X)2 (Ui − Ui−1)2 + 4a3
n (∆n

i X) (Ui − Ui−1)3
}
.

It is easy to show that under Hn,

n∑
i=1

(Ui − Ui−1)4 = 12n+Op(n
1/2),

n∑
i=1

(∆n
i X)3 (Ui − Ui−1) = Op(n

−1),

n∑
i=1

(∆n
i X) (Ui − Ui−1)3 = Op(1),

n∑
i=1

(∆n
i X)2 (Ui − Ui−1)2 = 2

∫ T

0
σ2
sds+Op(n

−1/2),

hence it follows that

V̂2n =
4

T 2

∫ T

0
σ4
sds+Op(∆n) +Op(∆

3/4
n ) +Op(∆

5/4
n ) +Op(∆

1/2
n ),

which establishes the desired result.

Appendix A.3 Proof of Theorem 2

Proof. The proof is similar to that of Theorem 1, but we need the following lemma.

Lemma 1. Suppose that X is an Itô semimartingale given by (30), and that γ̄nt is the (q + 1)-

dimensional vector-valued centered autocovariance function:

γ̄nt =

γ(0)nt −
∫ t

0
σ2
sds−

∑
0≤s≤t

(∆Xs)
2, γ(1)nt , . . . , γ(q)nt

ᵀ

, where

γ(l)nt =

[t/∆n]−l∑
i=1

(∆n
i X)(∆n

i+lX), 0 ≤ l ≤ q.

Then we have as ∆n → 0,

∆−1/2
n γ̄nt

L−s−→Wt + Zt,
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where W is a continuous process defined on an extension of the original probability space, which

conditionally on F , is a centered Gaussian martingale with covariance given by

E (Wi,tWj,t|F) = (δi,j + δi,0δj,0)

∫ t

0
σ4
sds, 0 ≤ i, j ≤ q;

and Z is a purely discontinuous process defined on the same extension of the original probability

space, which conditionally on F , is a centered martingale with covariance given by

E (Zi,tZj,t|F) = (δi,j + δi,0δj,0)
∑

0≤s≤t
(∆Xs)

2(σ2
s− + σ2

s), 0 ≤ i, j ≤ q,

and Z is independent of W. Moreover, Zi is a Gaussian process for i ≥ 1. Z0 is Gaussian if X and

σ2 do not co-jump.

Proof of Lemma 1 . We set Q− = {−q,−q + 1, . . . ,−1}, Q+ = {1, 2, . . . , q}, and Q = Q− ∪ Q+.

We introduce a family of variables ((Ψn,j)j∈Q,Ψn−,Ψn+, κn)n≥1, defined on an auxiliary space

(Ω′,F ′,P′), all independent, and with the following laws: Ψn,j , Ψn−, Ψn+ are i.i.d. N (0, 1). κn

is uniform on [0, 1]. (τn)n≥1 is an arbitrary weekly exhausting sequence for the jumps of X. We

define a very good filtration (Ω̃, F̃ , (F̃t)t≥0, P̃), such that

Ω̃ = Ω× Ω′, F̃ = F ⊗ F ′, P̃ = P⊗ P′,

where (F̃t)t≥0 is the smallest filtration containing (Ft)t≥0 and such that ((Ψn,j)j∈Q,Ψn−,Ψn+, κn)

is F̃τn measurable for all n. We also define

Rn,j =


στn−Ψn,j if j ∈ Q−;
√
κnστn−Ψn− +

√
1− κnστn−Ψn+ if j = 0;

στnΨn,j if j ∈ Q+.

W ′t is a (q + 1)-dimensional standard Brownian motion in (Ω′,F ′,P′), adapted to (F̃t)t≥0, and in-

dependent of ((Ψn,j)j∈Q,Ψn−,Ψn+, κn)n≥1. Finally, we define two (q + 1)-dimensional processes on

(Ω̃, F̃ , (F̃t)t≥0, P̃):

Wt =

∫ t

0
σ2
sdW

′
s ×


√

2 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

 ,

Zt =
∞∑

n=1,τn≤t
∆Xτn (2R(n, 0), R(n, 1) +R(n,−1), . . . , R(n, q) +R(n,−q))ᵀ ,

which are a.s. càdlàg, adapted, and conditionally on F have centered and independent increments.
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By localization, there exists a constant A and a non-negative function Γ such that

‖bt(ω)‖ ≤ A, ‖σt(ω)‖ ≤ A, ‖Xt(ω)‖ ≤ A, ‖δ(ω, t, z)‖ ≤ Γ(z) ≤ A,
∫

Γ(z)2ν̄(dz) ≤ A.

Let Am = {z : Γ(z) > 1/m}, (S(m, j) : j ≥ 1) are the successive jump times of the Poisson process

1Am\Am−1
∗ µ, (Sp)p≥1 is a reordering of the double sequence (S(m, j)), and let Pm denote the set of

all indices p such that Sp = S(m′, j) for some j ≥ 1 and some m′ ≤ m. We also introduce

S−(n, p) = (i− 1)∆n, S+(n, p) = i∆n, if (i− 1)∆n < Sp ≤ i∆n.

R−(n, p) =
1√
∆n

(XSp −X(i−1)∆n
), R+(n, p) =

1√
∆n

(Xi∆n −XSp),

R(n, p, 0) =
1√
∆n

(∆n
i X −∆XSp), R(n, p, j) =

1√
∆n

∆n
i+jX, −q ≤ j ≤ q,

b(m)t = bt −
∫
Am∩{z:‖δ(t,z)‖≤1}

δ(t, z)ν̄(dz),

X(m)t = X0 +

∫ t

0
b(m)sds+

∫ t

0
σsdWs + (δ1Am) ∗ µ,

X ′(m) = (δ1Am) ∗ µ, X ′′(m) = X(m)−X ′(m), X#(m) = X −X(m) = (δ1Ac
m

) ∗ (µ− ν)t.

We set Ωn(T,m) to be the set of all ω such that the jumps of X ′(m) in [0, T ] are spaced by more

than q∆n, and no such jump occurs in [0, q∆n] or [T − q∆n, T ]. Note that P(Ωn(T,m)) → 1, as

n→∞. We also use the notation:

βni,j = ∆−1/2
n σ(i−1)∆n

∆n
i+jW, β̄

n
i = (βni,0, β

n
i,1, . . . , β

n
i,q)

ᵀ × 1{i+q≤[t/∆n]},

X(m)′′,ni,j = ∆−1/2
n ∆n

i,jX
′′(m), X̄(m)′′,ni =

(
X(m)′′,ni,0 , X(m)′′,ni,1 , . . . , X(m)′′,ni,q

)ᵀ
× 1{i+q≤[t/∆n]},

We use γ̄nt (X,Y ) to denote the vector-valued cross-autocovariance function between X and Y . There-

fore, γ̄nt ≡ γ̄nt (X,X). We set

Znt (m) =
∑

p∈Pm:Sp≤∆n[t/∆n]

ζnp , where ζnp = (ζnp,0, ζ
n
p,1, . . . , ζ

n
p,q)

ᵀ, and

ζnp,j = (R(n, p, j) +R(n, p,−j)) ∆XSp ,

We have on the set Ωn(T,m),

1√
∆n

γ̄nT (X(m), X(m)) =
1√
∆n

γ̄nT (X ′′(m), X ′′(m)) + ZnT (m).

By Proposition 4.4.10 and Lemma 11.1.3 of Jacod and Protter (2012), we have

{(R(n, p, j))−q≤j≤q}p≥1
L−s−→ {(Rp,j)−q≤j≤q}p≥1 ,

therefore, writing ζp = (ζp,0, ζp,1, . . . , ζp,q)
ᵀ and ζp,j = (R(p, j) +R(p,−j)) ∆XSp , we have

(ζnp )p≥1
L−s−→ (ζp)p≥1.
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Since the set {Sp : p ∈ Pm} ∩ [0, t] is finite, we have, as n→∞,

Znt (m)
L−s−→ Zt(m),

where

Zt(m) =
∞∑

n=1,τn≤t
∆X ′(m)τn (2R(n, 0), R(n, 1) +R(n,−1), . . . , R(n, q) +R(n,−q))ᵀ .

Note that by Doob’s inequality, we have

Ẽ
(

sup
s≤t
‖Zs −Zs(m)‖2

)

=E

Ẽ

sup
s≤t

∥∥∥∥∥∥
∞∑

n=1,τn≤t
∆X#(m)τn (2R(n, 0), R(n, 1) +R(n,−1), . . . , R(n, q) +R(n,−q))ᵀ

∥∥∥∥∥∥
2

| F


≤KE

∑
s≤t

∥∥∥∆X#(m)s

∥∥∥2 (∥∥σ2
s

∥∥+
∥∥σ2

s−
∥∥) | F


≤KE

∑
s≤t

∥∥∥∆X#(m)s

∥∥∥2

 ≤ Ktα(m)−→0,

as m→∞, where α(m) =
∫
z:Γ(z)≤m−1 Γ(z)2ν̄(dz). This implies that Z(m)

u.c.p.
=⇒ Z.

Since we have

∆n
i+jX

′′(m)
√

∆n
− βni,j =

1√
∆n

∫ (i+j)∆n

(i+j−1)∆n

bsds+
1√
∆n

∫ (i+j)∆n

(i+j−1)∆n

(σs − σ(i−1)∆n
)dWs,

it follows from (11.2.22) of Jacod and Protter (2012) that, for all l ≥ 2,

E
(∥∥β̄ni ∥∥l)+ E

(∥∥X̄(m)′′,ni
∥∥l) ≤ Kl, E

(∥∥X̄(m)′′,ni − β̄
n
i

∥∥l) ≤ Kl∆n.

We can also write

1√
∆n

γ̄nT (X ′′(m), X ′′(m)) =Wn
t +Ant (m, 0) +Ant (m, 1)−Bn

t ,

where

Wn
t =

√
∆n

[t/∆n]∑
i=1

(
βni,0β̄

n
i −

(
σ2

(i−1)∆n
, 0, . . . , 0

)ᵀ)
,

Ant (m, 0) =
√

∆n

[t/∆n]∑
i=1

χni (m, 0), Ant (m, 1) =
√

∆n

[t/∆n]∑
i=1

χni (m, 1),

Bn
t =

1√
∆n

[t/∆n]∑
i=1

∫ i∆n

(i−1)∆n

(
σ2
s − σ2

(i−1)∆n

)
ds,
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and

χni (m, 0) = E
(
X(m)′′,ni,0 X̄(m)′′,ni − β

n
i,0β̄

n
i |F(i−1)∆n

)
,

χni (m, 1) = X(m)′′,ni,0 X̄(m)′′,ni − β
n
i,0β̄

n
i − E

(
X(m)′′,ni,0 X̄(m)′′,ni − β

n
i,0β̄

n
i |F(i−1)∆n

)
.

By Lemmas 11.2.5 and 11.2.7 of Jacod and Protter (2012), we have

Wn
t = ∆−1/2

n

[t/∆n]∑
i=1

σ2
(i−1)∆n

∆n
iW

′
0∆n

iW
′ L−s−→Wt,

Ant (m, j)
u.c.p.
=⇒ 0, j = 0, 1.

By e.g., (5.3.24) of Jacod and Protter (2012), we have Bn
t
u.c.p.
=⇒ 0. Combining the above results yield

1√
∆n

γ̄nt (X(m), X(m))
L−s−→Wt + Zt,

for each m.

By Proposition 2.2.4 of Jacod and Protter (2012), it remains to prove that for any η > 0 and

t > 0, as m→∞,

sup
n

P
(

sup
s≤t
‖γ̄ns (X(m), X(m))− γ̄ns (X,X)‖ > η

√
∆n

)
−→ 0. (A.13)

We only need to prove this result for γns (j)(X(m), X(m))−γns (j)(X,X), for some 1 ≤ j ≤ q, because

the case with j = 0 has been shown in (5.4.26) of Jacod and Protter (2012). Note that

[t/∆n]−j∑
i=1

(
∆n
i X(m)∆n

i+jX(m)−∆n
i X∆n

i+jX
)

=

[t/∆n]−j∑
i=1

(
∆n
i X∆n

i+jX
#(m) + ∆n

i X
#(m)∆n

i+jX(m)
)
.

By Doob’s inequality, we have

E

sup
s≤t

∣∣∣∣∣∣
[s/∆n]−j∑
i=1

∆n
i X∆n

i+jX
#(m)

∣∣∣∣∣∣
 ≤

E
[t/∆n]−j∑
i=1

(
∆n
i X∆n

i+jX
#(m)

)2

1/2

≤ K(α(m)∆n)1/2,

(A.14)

where we use the fact that for any s ∈ [(i− 1)∆n, i∆n],

E
(
X#(m)s −X#(m)(i−1)∆n

)2
≤ Kα(m)∆n, E

(
Xs −X(i−1)∆n

)2 ≤ K∆n.

Similarly, by Doob’s inequality and the Cauchy-Schwarz inequality, we have:

E

sup
s≤t

∣∣∣∣∣∣
[s/∆n]−j∑
i=1

∆n
i X

#(m)∆n
i+jX(m)

∣∣∣∣∣∣
 (A.15)

≤

E
[t/∆n]−j∑
i=1

(
∆n
i X

#(m)∆n
i+jX(m)

)2

1/2

+

[t/∆n]−j∑
i=1

∣∣∣E(∆n
i X

#(m)∆n
i+jX(m)|F(i−1)∆n

)∣∣∣
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≤K(α(m)∆n)1/2.

Combining (A.14) and (A.15) yields (A.13), which concludes the proof.

To prove Theorem 2, we now adopt the same change of variable as in (A.1), and the same

definition of Ψi, i = 1, 2. Note that (A.5), (A.6), and (A.7) still hold, when X contains jumps, due

to (A.3). Therefore, (A.8) and (A.9) also hold. We need a change in the definition of Ψi, i = 1, 2.

Define

Ψ1 =− 1

2γ2
+

1

2γ4(1− φ2)T

∫ T

0
σ2
sds+

∑
s≤T

(∆Xs)
2 + 2(1− φ)Ta2

0∆γ0−1
n

 ,

Ψ2 =− φ

γ2(1− φ2)2T

∫ T

0
σ2
sds+

∑
s≤T

(∆Xs)
2 + 2(1− φ)Ta2

0∆γ0−1
n

+
a2

0∆γ0−1
n

γ2(1− φ2)
.

Then, we have

Ψ1 −Ψ1 =
1

2γ4(1− φ2)T


 n∑
i=1

(∆n
i X)2 −

∫ T

0
σ2
sds−

∑
s≤T

(∆Xs)
2

+ 2
n∑
i=1

∑
j<i

φ|i−j|∆n
i X∆n

jX


+Op(∆n)

Ψ2 −Ψ2 =− φ

γ2(1− φ2)2T

 n∑
i=1

(∆n
i X)2 −

∫ T

0
σ2
sds−

∑
s≤T

(∆Xs)
2


− 1

γ2(1− φ2)2T

n∑
i=1

∑
j<i

(
2φ|i−j|+1 + (1− φ2)|i− j|φ|i−j|−1

)
∆n
i X∆n

jX +Op(∆n)

By Theorem 5.4.2 of Jacod and Protter (2012),

n∑
i=1

(∆n
i X)2 −

∫ T

0
σ2
sds−

∑
s≤T

(∆Xs)
2 = Op(∆

1/2
n ).

Combining this with (A.5), (A.6), and (A.7), it follows that∥∥Ψi −Ψi

∥∥ = Op(∆
1/2
n ), i = 1, 2.

As before, we can then establish the desired consistency of (σ̂2
MLE, η̂MLE) with respect to (σ2∗, η∗) =(

1
T

{∫ T
0 σ2

sds+
∑

s≤T (∆Xs)
2
}
, a2

0∆γ0−1
n

)
.

To find the CLT, we consider Ψi −Ψi evaluated at (γ2∗, φ∗). Note that Ψi(γ
2∗, φ∗) = 0, so

∆−1/2
n Ψ1(γ2∗, φ∗) =

1

2γ∗4T


n∑
i=1

(∆n
i X)2 −

∫ T

0
σ2
sds−

∑
s≤T

(∆Xs)
2

+Op(∆
1/2
n ),

∆−1/2
n Ψ2(γ2∗, φ∗) =− 1

γ∗2T

n∑
i=2

∆n
i X∆n

i−1X +Op(∆
1/2
n ).
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By Lemma 1 below, we have

∆−1/2
n


Ψ1(γ2∗, φ∗)

Ψ2(γ2∗, φ∗)

σ̂2
RV − 1

T

(∫ T
0 σ2

sds+
∑

s≤T (∆Xs)
2
)
 L−s−→ W̄T + Z̄T , (A.16)

where W̄T is the same as in the proof of Theorem 1, and Z̄T is defined on the same extension as W̄T .

The conditional covariance of Z̄T is given by:

E
(
Z̄T Z̄ᵀ

T |F
)

=


(2γ8∗)−1 0 (γ4∗)−1

0 (γ4∗)−1 0

(γ4∗)−1 0 2

× 1

T 2

∑
s≤T

(∆Xs)
2(σ2

s− + σ2
s).

Moreover, Z̄2,T is F-conditional Gaussian. By entry-wise Taylor expansion of Ψi, and the convergence

of ∇Ψ to ∇Ψ, we have

∆−1/2
n


γ̂2 − γ2∗

φ̂− φ∗

σ̂2
RV − σ2∗

 =−∆−1/2
n


∂Ψ1/∂γ

2 ∂Ψ1/∂φ 0

∂Ψ2/∂γ
2 ∂Ψ2/∂φ 0

0 0 1


−1

Ψ1(γ2∗, φ∗)

Ψ2(γ2∗, φ∗)

σ̂2
RV − σ2∗

+ op(1)

=−∆−1/2
n


(2γ4∗) 0 0

0 1 0

0 0 1




Ψ1(γ2∗, φ∗)

Ψ2(γ2∗, φ∗)

σ̂2
RV − σ2∗

+ op(1).

Applying the change of variable from (γ2, φ) to (σ2, η), we have

∆−1/2
n


σ̂2

MLE − σ2∗

η̂ − η∗

σ̂2
RV − σ2∗

 =∆−1/2
n


1 −2γ2∗ 0

0 γ2∗ 0

0 0 1




γ̂2 − γ2∗

φ̂− φ∗

σ̂2
RV − σ2∗

+ op(1)

=∆−1/2
n


2γ4∗ −2γ2∗ 0

0 γ2∗ 0

0 0 1




Ψ1(γ2∗, φ∗)

Ψ2(γ2∗, φ∗)

σ̂2
RV − σ2∗

+ op(1).

A simple matrix multiplication gives the desired asymptotic covariance matrix. Note that Ψ2 is

F-conditional Gaussian, it implies that the asymptotic distribution of η̂− η∗ is also F-conditionally

Gaussian. Moreover,

∆−1/2
n

(
σ̂2

MLE − σ̂2
RV

)
=∆−1/2

n

(
2γ4∗Ψ1(γ2∗, φ∗)− 2γ2∗Ψ2(γ2∗, φ∗)− σ̂2

RV

)
+ op(1)

=− 2∆−1/2
n γ2∗Ψ2(γ2∗, φ∗) + op(1).

Therefore, ∆
−1/2
n

(
σ̂2

MLE − σ̂2
RV

)
is F-conditionally Gaussian, which concludes the proof.
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Appendix A.4 Proof of Corollary 2

The proof is similar to that of Corollary 1. By Theorem 2, we have

∆−1/2
n

(
σ̂2

MLE − σ̂2
RV

) L−s−→MN
0,

4

T 2

∫ T

0
σ4
sds+

∑
t≤T

(∆Xs)
2(σ2

s− + σ2
s)

 .

Moreover, by (10.24) and (10.27) of Aı̈t-Sahalia and Jacod (2014), V̂3n is a consistent estimator

of the asymptotic variance. Therefore, H3n has the desired distribution under H0. Under H1,

σ̂2
RV = 2a2

0∆−1
n + Op(1), and σ̂2

MLE = Op(1). Moreover, as un → 0, 1{|Yi|≤un} → 0, it follows that

V̂3n
p→ 0, hence H3n

p→ ∞. Finally, under Hn, because anUi = Op(∆
3/4
n ), the noise term is not

affected by jump truncation, hence similar calculations as in Corollary 1 yields that V̂3n remains

consistent, which concludes the proof.

Appendix A.5 Proof of Corollary 3

Proof. The desired result follows from Theorem 2 and the proof of Corollary 2.

Appendix A.6 Proof of Corollary 4

Proof. The desired result follows from Lemma 1 and the proof of Corollary 2.

Appendix A.7 Proof of Theorem 3

Proof. Recall that we have

∆−1/4
n

σ̂2
AVG −

1

T

∫ T

0
σ2
sds+

∑
s≤T

(∆Xs)
2


L−s−→MN

0,
1

θT 2

∫ T

0
R
(
σ2
t , θ

2a2
n

)
dt+

∑
t≤T

S(∆Xt, σ
2
t , θ

2a2
n)

 ,

V̂ (σ̂2
AVG)

p−→ 1

θT 2

∫ T

0
R
(
σ2
t , θ

2a2
n

)
dt+

∑
t≤T

S(∆Xt, σ
2
t , θ

2a2
n)

 ,

which hold whether a2
n ≥ 0 or a2

n → 0, as long as kn∆
1/2
n = θ−1 ∈ (0,∞). Since under H0, we have

σ̂2
RV = 1

T

(∫ T
0 σ2

sds+
∑

s≤T (∆Xs)
2
)

+Op(∆
−1/2
n ), it follows that

H4n
L−→ χ2

1, under H0.

Under H1, we have

σ̂2
RV =

1

T

∫ T

0
σ2
sds+

∑
s≤T

(∆Xs)
2

+
2a2

0

∆n
+ op(1),
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it implies that H4n = Op(∆
−5/2
n ).

Finally, under the local alternative Hn : a2
n = a2

0∆
5/4
n , we have

∆−1/4
n

(
σ̂2

AVG − σ̂2
RV

)
=∆−1/4

n

σ̂2
AVG −

1

T

∫ T

0
σ2
sds+

∑
s≤T

(∆Xs)
2

+ ∆−1/4
n

 1

T

∫ T

0
σ2
sds+

∑
s≤T

(∆Xs)
2

− σ̂2
RV


L−s−→MN

2a2
0,

1

θT 2

∫ T

0
R
(
σ2
t , 0
)
dt+

∑
t≤T

S(∆Xt, σ
2
t , 0)

 ,

it follows that H4n converges to a non-central Chi-squared distribution with one degree of freedom

and the non-centrality parameter 4a4
0θT

2
(∫ T

0 R(σ2
t , 0) +

∑
s≤T S(∆Xt, σ

2
t , 0)

)−1
.
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Appendix B Additional Simulation Results

∆n = 5 seconds ∆n = 30 seconds
a2

0 level H3n Tn ACn H4n H3n Tn ACn H4n

Size 0 1% 1.2 1.2 1.2 2.9 1.2 1.1 1.2 1.9
10−8 1% 93.2 93.0 93.2 25.1 3.6 3.6 3.5 2.9

Power 10−7 1% 100.0 100.0 100.0 97.4 83.7 84.0 83.6 23.2
10−6 1% 100.0 100.0 100.0 98.8 99.2 99.1 99.1 97.3

Size 0 10% 11.0 10.9 11.0 11.2 10.6 10.4 10.5 13.1
10−8 10% 96.9 96.9 96.9 45.6 19.2 19.4 19.1 11.6

Power 10−7 10% 100.0 100.0 100.0 97.9 92.7 92.6 92.7 47.2
10−6 10% 100.0 100.0 100.0 98.8 99.8 99.8 99.8 98.4

∆n = 1 minute ∆n = 5 minutes
a2

0 level H3n Tn ACn H4n H3n Tn ACn H4n

Size 0 1% 1.3 1.4 1.3 2.4 1.6 1.8 1.6 4.5
10−8 1% 1.5 1.5 1.7 3.1 1.7 1.8 1.7 3.5

Power 10−7 1% 37.3 36.9 36.9 9.0 2.1 2.9 2.2 4.8
10−6 1% 98.5 98.3 98.3 87.3 29.8 30.4 28.7 17.8

Size 0 10% 9.8 9.5 9.7 9.6 11.3 10.1 11.6 12.5
10−8 10% 12.1 12.0 12.2 13.6 10.2 10.1 10.3 12.6

Power 10−7 10% 63.5 62.8 63.4 24.1 13.2 13.6 13.2 13.9
10−6 10% 99.6 99.5 99.5 92.9 59.0 57.7 58.0 34.2

Table B.1: Simulation Results: Percentage of Rejections of H0 for the Heston Model at
the 1% and 10% Levels
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∆n = 5 seconds ∆n = 30 seconds
a2

0 level H3n Tn ACn H4n H3n Tn ACn H4n

Size 0 1% 1.1 1.1 1.1 4.6 1.1 1.0 1.1 2.7
10−8 1% 94.9 94.9 94.9 34.8 9.3 8.6 9.1 3.4

Power 10−7 1% 100.0 100.0 100.0 95.6 89.7 89.6 89.5 36.3
10−6 1% 100.0 100.0 100.0 95.4 99.9 99.9 99.9 97.3

Size 0 10% 9.7 9.6 9.5 14.7 10.5 10.9 10.8 11.3
10−8 10% 97.2 97.2 97.2 56.4 28.4 28.3 28.1 14.7

Power 10−7 10% 100.0 100.0 100.0 95.9 95.9 95.7 95.9 55.8
10−6 10% 100.0 100.0 100.0 95.4 99.9 99.9 99.9 98.5

∆n = 1 minute ∆n = 5 minutes
a2

0 level H3n Tn ACn H4n H3n Tn ACn H4n

Size 0 1% 1.0 1.0 1.0 3.0 2.0 2.0 1.9 4.4
10−8 1% 2.3 2.2 2.2 5.7 3.3 3.2 3.4 3.6

Power 10−7 1% 54.8 54.8 54.7 13.8 2.1 2.4 2.0 5.3
10−6 1% 97.3 97.3 97.3 87.0 43.5 41.7 43.1 25.4

Size 0 10% 11.2 10.8 11.1 10.5 10.8 10.6 11.0 11.7
10−8 10% 14.1 13.7 13.5 13.2 13.5 13.1 13.4 10.7

Power 10−7 10% 74.4 73.7 74.0 31.6 13.6 13.6 12.9 13.5
10−6 10% 98.7 98.7 98.7 92.6 67.3 66.1 66.2 44.2

Table B.2: Simulation Results: Percentage of Rejections of H0 for the Log-Volatility
Model at the 1% and 10% Levels
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Figure B.1: Small Sample and Asymptotic Distributions of the Test Statistics under H0: Heston

Model with Jumps, 5-second Sampling
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Note: The dashed curves provide the densities of the asymptotic distributions, χ2
1 for H3n, H4n and N(0, 1)

for Tn, ACn respectively. A Heston-style model with jumps (47) and (48) is simulated for H3n, Tn, ACn, and

H4n. The average length of the sampling intervals is 5 seconds. The sampling window is 1 week.
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Figure B.2: Small Sample and Asymptotic Distributions of the Test Statistics under H0: Heston

Model with Jumps, 5-minute Sampling
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Note: The dashed curves provide the densities of the asymptotic distributions, χ2
1 for H3n, H4n and N(0, 1)

for Tn, ACn respectively. A Heston-style model with jumps (47) and (48) is simulated for H3n, Tn, ACn, and

H4n. The average length of the sampling intervals is 5 minutes. The sampling window is 1 week.
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Figure B.3: Small Sample and Asymptotic Distributions of the Test Statistics under H0: Log-volatility

Model, 5-second Sampling
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Note: The dashed curves provide the densities of the asymptotic distributions, χ2
1 for H3n, H4n and N(0, 1)

for Tn, ACn respectively. A Log-volatility model with jumps (47) and (48) is simulated for H3n, Tn, ACn,

and H4n. The average length of the sampling intervals is 5 seconds. The sampling window is 1 week.
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Figure B.4: Small Sample and Asymptotic Distributions of the Test Statistics under H0: Log-volatility

Model, 5-minute Sampling
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Note: The dashed curves provide the densities of the asymptotic distributions, χ2
1 for H3n, H4n and N(0, 1)

for Tn, ACn respectively. A Log-volatility model with jumps (47) and (48) is simulated for H3n, Tn, ACn,

and H4n. The average length of the sampling intervals is 5 minutes. The sampling window is 1 week.
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